Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The synthesis of (11R,12S)-lactobacillic acid and its enantiomer

Coxon, G.D. and Al Dulayymi, J.R. and Baird, M.S. and Knobl, S. and Roberts, E. and Minnikin, D.E. (2003) The synthesis of (11R,12S)-lactobacillic acid and its enantiomer. Tetrahedron: Asymmetry, 14 (9). pp. 1211-1222. ISSN 1362-511X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

(11R,12S)-Lactobacillic acid has been prepared from 2,3-O-isopropylidene-d-glyceraldehyde, in a sequence involving asymmetric cyclopropanation, and from cis-cyclopropane-1,2-dimethanol, using enzymatic desymmetrisation. The key step in the former route was the stereochemically controlled cyclopropanation of (1Z,4′S)-(2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-1-octene via a Simmons–Smith type reaction, using diethylzinc and chloroiodomethane. This product was converted into the key intermediate (1R,2S)-1-formyl-2-hexylcyclopropane, which was also obtained by a known sequence from the (1R,2S)-monobutyrate ester of cis-cyclopropane-1,2-dimethanol. This pivotal aldehyde was converted into (11R,12S)-lactobacillic acid. Using analogous chemistry, the (11S,12R)-enantiomer of lactobacillic acid was prepared from 2,3-O-isopropylidene-d-glyceraldehyde or from the (1S,R)-monobutyrate ester of cis-cyclopropane-1,2-dimethanol.