Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The synthesis of (11R,12S)-lactobacillic acid and its enantiomer

Coxon, G.D. and Al Dulayymi, J.R. and Baird, M.S. and Knobl, S. and Roberts, E. and Minnikin, D.E. (2003) The synthesis of (11R,12S)-lactobacillic acid and its enantiomer. Tetrahedron: Asymmetry, 14 (9). pp. 1211-1222. ISSN 1362-511X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

(11R,12S)-Lactobacillic acid has been prepared from 2,3-O-isopropylidene-d-glyceraldehyde, in a sequence involving asymmetric cyclopropanation, and from cis-cyclopropane-1,2-dimethanol, using enzymatic desymmetrisation. The key step in the former route was the stereochemically controlled cyclopropanation of (1Z,4′S)-(2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-1-octene via a Simmons–Smith type reaction, using diethylzinc and chloroiodomethane. This product was converted into the key intermediate (1R,2S)-1-formyl-2-hexylcyclopropane, which was also obtained by a known sequence from the (1R,2S)-monobutyrate ester of cis-cyclopropane-1,2-dimethanol. This pivotal aldehyde was converted into (11R,12S)-lactobacillic acid. Using analogous chemistry, the (11S,12R)-enantiomer of lactobacillic acid was prepared from 2,3-O-isopropylidene-d-glyceraldehyde or from the (1S,R)-monobutyrate ester of cis-cyclopropane-1,2-dimethanol.