Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Direct evidence for strain inhomogeneity in inxGa1-xN epilayers by raman spectroscopy

Correia, M.R. and Pereira, S.M.D.S. and Ferreira Pereira Lopes, E.M. and Frandon, J. and Watson, I.M. and Liu, C. and Alves, E. and Sequeira, A.D. and Franco, N. (2004) Direct evidence for strain inhomogeneity in inxGa1-xN epilayers by raman spectroscopy. Applied Physics Letters, 85 (12). pp. 2235-2237. ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This contribution is focused on Raman analysis of the InxGa1-xN alloy. It presents direct evidence that both strain and composition effects must be taken into account to interpret the Raman experimental results. Raman studies have been commonly discussed in view of composition inhomogeneity only, neglecting the possible existence of strain depth variations, recently shown to occur for layers grown above the critical layer thickness. The effects of this variation on the A1(LO) phonon frequency could only be investigated by combining both structural and Raman measurements. In this letter, a set of InxGa1-xN layers has been chemically etched during different periods, allowing the depth variation of the phonon frequency to be unambiguously evidenced. Comparing the Raman spectra before and after etching, two distinct InxGa1-xN regions, differing on their strain state, are identified: a relaxed one, found near the surface region; another one, grown coherently (i.e., pseudomorphic) to the GaN buffer layer. These results are in excellent agreement with an additional reciprocal space map analysis.