Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Phototauntomerism of o-nitrobenzyl compounds: o-quinonoid aci-nitro species studied by matrix isolation and DFT calculations

Dunkin, Ian R. and Gebicki, Jerzy and Kiszka, Mariusz and Sanin-Leira, David (2001) Phototauntomerism of o-nitrobenzyl compounds: o-quinonoid aci-nitro species studied by matrix isolation and DFT calculations. Journal of the Chemical Society, Perkin Transactions 2 (8). pp. 1414-1425. ISSN 1472-779X

[img]
Preview
PDF (Phototautomerism of o-nitrobenzyl compounds)
b009630j.pdf - Final Published Version

Download (273kB) | Preview

Abstract

Photolyses of 2-nitrobenzyl methyl ether and 2-nitrotoluene with 254 nm light have been investigated in Ar and N2 matrices at 12 K, and have been found to give o-quinonoid aci-nitro species as the primary photoproducts, along with other products. The o-quinonoid species have UV absorptions at relatively long wavelengths (λmax at 385–430 nm) and undergo facile secondary photolysis when irradiated in these absorption bands. By means of this selective photolysis, fairly complete IR spectra of the o-quinonoids have been obtained. Comparison of the matrix IR spectra of these species with simulated spectra computed using density functional theory (DFT) has confirmed the identity of these reactive intermediates. Moreover, detailed analysis of the fit between the computed and experimental IR spectra has allowed the specific stereoisomers generated to be identified with reasonable confidence. Computations have also been made of the relative energies of the starting compounds, intermediate o-quinonoid isomers and the possible secondary products, together with the transition states connecting them. The results of these computations indicate that the observed stereoisomer of each of the o-quinonoid species cannot arise by photoinduced H-atom transfer followed by isomerizations on the electronic ground-state surfaces, since the energy barriers for reversion to starting compounds are substantially lower than those for the necessary isomerizations. It is therefore concluded that H-atom transfer and conformational interconversion occur in an electronic excited state.