Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

An improved fibre optic strain sensor for gas tank monitoring with RF subcarrier phase and I and Q demodulation techniques

Thursby, G.J. and Dong, F. and Culshaw, B. and Massaro, G. and Glisic, B. and Inaudi, D. (2005) An improved fibre optic strain sensor for gas tank monitoring with RF subcarrier phase and I and Q demodulation techniques. In: Smart Structures and Materials 2005 Conference, 2005-03-07 - 2005-03-10.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

With increased interest in the use of compressed gas as a vehicle fuel, attention has been focussed on the safety issues surrounding the tanks used to store the fuel. Currently it is necessary to remove the tanks from the vehicle in order to inspect them, which entails a considerable cost in manpower and takes the vehicle being out of service. We have been developing a sensor scheme that can provide in situ monitoring of the tanks condition. This entails bonding optical fibre sensors to the tank and using them to measure the strains experienced by the tank during pressurisation. If the tank is significantly damaged, then the tank will expand in a distorted manner. We therefore measure the strain characteristics of a healthy tank and use them as a reference for future measurements. The method of strain measurement is the well established rf subcarrier phase detection technique, however in this application the changes in optical power caused by microbending of the fibres during pressurisation produces inaccuracies. In order to overcome this problem we use both in- phase and quadrature mixing and then take the ratio of the outputs to obtain a value of arctangent that is independent of amplitude.