Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Imidazole-derived carbenes and their elusive tetraazafulvalene dimers

Jolly, Phillip I. and Zhou, Shengze and Thomson, Douglas W. and Garnier, Jean and Parkinson, John A. and Tuttle, Tell and Murphy, John A. (2012) Imidazole-derived carbenes and their elusive tetraazafulvalene dimers. Chemical Science, 3 (5). pp. 1675-1679. ISSN 2041-6520

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Previous efforts to prepare tetraazafulvalenes derived from imidazolium salt precursors have met with little success (one anomalously favourable example is known), and this is in line with the predicted reactivity of these compounds. However, we now report the preparation of a series of these tetraazafulvalenes formed either by deprotonation of 1,3-dialkylimidazolium salts or by Birch reduction of biimidazolium salts. The tetraazafulvalenes are highly reactive; for example, they act as Super-Electron-Donors towards iodoarenes. The two most reactive examples are formed more efficiently by Birch reduction than by the deprotonation route. Nevertheless, even in cases where the deprotonation approach affords a low stationary concentration, the mixture of precursor salt and base still produces the same powerful reductive chemistry that is the hallmark of tetraazafulvalene electron donors.