Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Actual PV module performance including spectral losses in the UK

Williams, S.R. and Betts, T.R. and Vorasayan, P. and Gottschalg, R. and Infield, D.G. (2005) Actual PV module performance including spectral losses in the UK. In: 31st IEEE Photovoltaic Specialist Conference, 2005-01-03 - 2005-01-07.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

STC efficiencies are not sufficient to compare photovoltaic devices of different semiconductor material or device configurations. The energy yield will change as the variables of STC deviates from their original values when the modules are placed in various climatic conditions. The magnitude of this change for different modules is not always clear and needs to be investigated and modelled. A modeling and analysis method named site specific conditions (SSC) is demonstrated which is a measure-correlate-predict approach. It allows an accurate estimation of the actual energy yield for different sites based on the measurements at one single site. The method takes into account the effect of the physical operating environment and translates this to other meteorological conditions on the basis of physics related formulae. Our results show a large seasonal variation for modules for the different effects. For crystalline modules losses of up to 12% in the summer is due to the temperature effect while the multi-junction thin film losses of more than 30% in the winter is due to spectral changes and incidence angle effect for the UK.