Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Self-orthogonalizing overlap-save GSC

Koh, C.L. and Weiss, S. and Peterson, J.M. and Bharitkar, S. (2005) Self-orthogonalizing overlap-save GSC. In: 39th Asilomar Conference on Signals, Systems and Computers, 1900-01-01.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper discusses a computationally inexpensive and fast converging approach to broadband beamforming. Exemplarily utilising the generalised sidelobe canceller (GSC), accurate low-cost implementations in the DFT domain based on overlap-save techniques have been previously suggested, which however suffer from slow convergence when used in combination with the least mean squares algorithm. To overcome this limitation, the beamformer proposed here exploits decorrelation of the input signal within the overlap-save architecture. By inclusion of a self-orthogonalizing component into the adaptive algorithm, the eigenvalue spread of the covariance matrix of the input signal is reduced, thereby increasing the adaptation rate. Simulation results indicate that the convergence speed of the proposed beamformer is comparable to a time domain realisation, albeit at a much reduced cost.