Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals

Laurand, Nicolas and Guilhabert, Benoit Jack Eloi and Mckendry, Jonathan and Kelly, A. and Rae, B. and Massoubre, David and Gong, Zheng and Gu, Erdan and Henderson, R.K. and Dawson, Martin (2012) Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals. Optical Materials, 2 (3). pp. 250-260. ISSN 0925-3467

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report on the steady-state and optical modulation characteristics of a luminescence down-converting colloidal quantum dot/polyimide nanocomposite system suitable for integration with gallium nitride optoelectronics. The approach provides solution-processable and environmentally stable composite materials whose optical conversion and intrinsic modulation properties were evaluated at wavelengths from 535 to 624 nm. A nanocomposite for white-light generation upon excitation and mixing with 450-nm light was also obtained by blending colloidal quantum dots of different sizes in the same matrix. The forward external quantum efficiencies of the resulting nanocomposites were found to depend on the wavelength and can be as high as 33%. Optical modulation bandwidth above 25 MHz, which is an order of magnitude higher than for typical phosphor-based color-converters for GaN LEDs, and wavelength-converted data with an open-eye diagram at 25 Mb/s are demonstrated under external gallium nitride light-emitting diode excitation. These modulation characteristics are correlated with carrier lifetimes. This work provides guideline parameters and creates a possible path to integrated hybrid visible light sources for scientific and communications application

Item type: Article
ID code: 37786
Keywords: quantum dot nanocomposites , wavelength conversion , modulated optical signals , optics, Optics. Light, Electronic, Optical and Magnetic Materials, Atomic and Molecular Physics, and Optics, Electrical and Electronic Engineering, Computer Science(all)
Subjects: Science > Physics > Optics. Light
Department: Faculty of Science > Institute of Photonics
Technology and Innovation Centre > Photonics
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 22 Feb 2012 10:26
Last modified: 27 Mar 2014 09:59
URI: http://strathprints.strath.ac.uk/id/eprint/37786

Actions (login required)

View Item