Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Constant free error bounds for nonuniform order discontinuous Galerkin finite-element approximation on locally refined meshes with hanging nodes

Ainsworth, Mark and Rankin, Richard Andrew Robert (2011) Constant free error bounds for nonuniform order discontinuous Galerkin finite-element approximation on locally refined meshes with hanging nodes. IMA Journal of Numerical Analysis, 31 (1). pp. 254-280. ISSN 0272-4979

[img]
Preview
PDF
Constant_free_error.pdf - Preprint

Download (1MB) | Preview

Abstract

We obtain fully computable constant free a posteriori error bounds on the broken energy seminorm and the discontinuous Galerkin (DG) norm of the error for nonuniform polynomial order symmetric interior penalty Galerkin, nonsymmetric interior penalty Galerkin and incomplete interior penalty Galerkin finite-element approximations of a linear second-order elliptic problem on meshes containing hanging nodes and comprised of triangular elements. The estimators are completely free of unknown constants and provide guaranteed numerical bounds on the broken energy seminorm and the DG norm of the error. These estimators are also shown to provide a lower bound for the broken energy seminorm and the DG norm of the error up to a constant and higher-order data oscillation terms.