Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Pressure-dependent EPANET extension: pressure-dependent demands

Tanyimboh, Tiku and Siew, Calvin (2010) Pressure-dependent EPANET extension: pressure-dependent demands. In: 12th International Conference on Water Distribution Systems Analysis. American Society of Civil Engineers.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In water distribution networks (WDNs), the available flow at a demand node is dependent on the pressure at that node. When a network is lacking in pressure, not all consumer demands will be met in full. In this context, the assumption that all demands are fully satisfied regardless of the pressure in the system becomes unreasonable and represents the main limitation of the conventional demand driven analysis (DDA) approach to WDS modelling. A realistic depiction of the network performance can only be attained by considering demands to be pressure dependent. This paper presents an extension of the renowned DDA based hydraulic simulator EPANET 2 to incorporate pressure‐dependent demands. This extension is termed “EPANET‐PDX” (pressure‐dependent extension) herein. The utilization of a continuous nodal pressure‐flow function coupled with a line search and backtracking procedure greatly facilitate the algorithm's convergence rate and robustness. Simulations of real life networks consisting of multiple sources, pipes, valves and pumps were successfully executed and results are presented herein. Excellent modelling performance was achieved for analysing both normal and pressure deficient conditions of the WDNs.