Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles

Gorkunov, M.V. and Osipov, Mikhail (2011) Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter, 7 (9). pp. 4348-4356. ISSN 1744-683X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In the framework of molecular mean-field theory we study the effect of nanoparticles embedded in nematic liquid crystals on the orientational ordering and nematic–isotropic phase transition. We show that spherically isotropic nanoparticles effectively dilute the liquid crystal medium and decrease the nematic–isotropic transition temperature. At the same time, anisotropic nanoparticles become aligned by the nematic host and, reciprocally, improve the liquid crystal alignment. The theory clarifies the microscopic origin of the experimentally observed shift of the isotropic–nematic phase transition and an improvement of the nematic order in composite materials. A considerable softening of the first order nematic–isotropic transition caused by strongly anisotropic nanoparticles is also predicted.