Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Reversal of the TCR stop signal by CTLA-4

Brewer, J.M. and Schneider, Helga and Downey, Jos and Smith, Andrew and Zinselmeyer, B.H. and Rush, Catherine (2006) Reversal of the TCR stop signal by CTLA-4. Science, 313 (5795). pp. 1972-1975. ISSN 0036-8075

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The coreceptor cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is pivotal in regulating the threshold of signals during T cell activation, although the underlying mechanism is still not fully understood. Using in vitro migration assays and in vivo two-photon laser scanning microscopy, we showed that CTLA-4 increases T cell motility and overrides the T cell receptor (TCR)-induced stop signal required for stable conjugate formation between T cells and antigen-presenting cells. This event led to reduced contact periods between T cells and antigen-presenting cells that in turn decreased cytokine production and proliferation. These results suggest a fundamentally different model of reverse stop signaling, by which CTLA-4 modulates the threshold for T cell activation and protects against autoimmunity.