Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Reversal of the TCR stop signal by CTLA-4

Brewer, J.M. and Schneider, Helga and Downey, Jos and Smith, Andrew and Zinselmeyer, B.H. and Rush, Catherine (2006) Reversal of the TCR stop signal by CTLA-4. Science, 313 (5795). pp. 1972-1975. ISSN 0036-8075

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The coreceptor cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is pivotal in regulating the threshold of signals during T cell activation, although the underlying mechanism is still not fully understood. Using in vitro migration assays and in vivo two-photon laser scanning microscopy, we showed that CTLA-4 increases T cell motility and overrides the T cell receptor (TCR)-induced stop signal required for stable conjugate formation between T cells and antigen-presenting cells. This event led to reduced contact periods between T cells and antigen-presenting cells that in turn decreased cytokine production and proliferation. These results suggest a fundamentally different model of reverse stop signaling, by which CTLA-4 modulates the threshold for T cell activation and protects against autoimmunity.