Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Optimal geometric motion planning for a spin-stabilized spacecraft

Biggs, James and Horri, Nadjim (2012) Optimal geometric motion planning for a spin-stabilized spacecraft. Systems and Control Letters, 61 (4). pp. 609-616. ISSN 0167-6911

[img]
Preview
PDF
Biggs_JD_Pure_Optimal_geometric_motion_planning_for_spin_stabilized_spacecraft_Feb_2012.pdf - Preprint

Download (1MB) | Preview

Abstract

A method requiring low-computational overhead is presented which generates low-torque reference motions between arbitrary orientations for spin-stabilized spacecraft. The initial stage solves a constrained optimal control problem deriving analytical solutions for a class of smooth and feasible reference motions. Specifically, for a quadratic cost function an application of Pontryagin’s maximum principle leads to a completely integrable Hamiltonian system that is, exactly solvable in closed-form, expressed in terms of several free parameters. This is shown to reduce the complexity of a practical motion planning problem from a constrained functional optimization problem to an unconstrained parameter optimization problem. The generated reference motions are then tracked using an augmented quaternion feedback law, consisting of the sum of a proportional plus derivative term and a term to compensate nonlinear dynamics. The method is illustrated with an application to re-point a spin-stabilized agile micro-spacecraft using zero propellant. The low computational overhead of the method enhances its suitability for on-board motion generation.