Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Fast high-voltage, high-current switching using stacked IGBTs

Ghasemi, Z. and MacGregor, S.J. and Dick, A.R. and Tuema, F.A. (2001) Fast high-voltage, high-current switching using stacked IGBTs. In: 2001 IEE Symposium on Pulsed Power, 2001-05-01 - 2001-05-02.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The development of solid-state switches for pulsed power applications has been of considerable interest since high-power semiconductor devices became available. However, the use of solid-state devices in the pulsed power environment has usually been restricted by device limitations in either their voltage/current ratings or their switching speed. The stacking of fast medium-voltage devices, such as IGBTs, to improve the voltage rating, makes solid-state switches a potential substitute for conventional switches such as hard glass tubes, thyratrons and spark gaps.This paper reports on a comparative study into the performance of commercially available 1.2 kV IGBT devices. It has been found that dual degradation of the drainsource voltage can be observed in most of the devices and the reasons for this have been investigated. Further studies have looked at the performance and operation of a high current switch employing fifty 1.2 kV IGBTs in a stacked configuration. Switching times of a few tens of nanoseconds have been measured for a 10 kV charging voltage switched into a 25 R input impedance Blumlein pulse generator.