Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Error protection using PUM codes for future mobile communication systems

Stankovic, L. and Honary, B. and Williams, C. (2001) Error protection using PUM codes for future mobile communication systems. In: Second International Conference on 3G Mobile Communication Technologies (3G 2001), 2001-03-26 - 2001-03-28.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Mobile communication systems require error control techniques that improve the link performance in hostile mobile radio environments. The mobile radio channel is particularly dynamic due to multipath fading and Doppler spread. These effects have a strong negative impact on the bit error rate (BER) of any modulation technique. This paper introduces systematic partial unit memory turbo codes (SPUMTCs) as a means of improving the BER in such channels and can be used in conjunction with equalization schemes producing soft information. An iterative maximum a posteriori (MAP) decoding scheme is suggested for multistage trellises. The performance of the SPUMTC is measured and compared to that of the well-established recursive systematic convolutional turbo code (RSCTC) in flat Rayleigh and Ricean fading channels using BPSK modulation. Simulation results show that SPUMTCs have comparable performance to RSCTCs in flat fading channels.