Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Small inspection vehicles for non-destructive testing applications

Friedrich, M. and Gatzoulis, L. and Hayward, G. and Galbraith, W. (2006) Small inspection vehicles for non-destructive testing applications. In: Climbing and Walking Robots 2006, 1900-01-01.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

One of the fundamental questions in service robotics is how we can get those machines to work efficiently in the same environment with and under the command of the average user. The answer – not an easy one – is in the development of human-robot interfaces (HRI), which should be able to transmit the will of the user to the robot in a simple but effective way preferably using means that are natural to humans. The paper introduces a generic interface concept based on exchanging cognitive information between the robot and the user, both present in the same environment. The information is exchanged through a virtual world called “common situation awareness” or “common presence” of both entities. The virtual world is a simple map augmented by database of semantic information. Functions of the HRI are based on utilizing interactively the senses of both the human and machine entities, the human when perceiving the environment and commanding the machine and the machine when looking for working targets or moving in the environment. The syntax of the communication language utilizes the objects and work targets currently existing in the common presence. A multitasking humanoid robot, called WorkPartner, is used to demonstrate the interface principles. The interface is designed to support interaction, including teaching and learning, with the human user in various outdoors work tasks. Natural to human communication methods, such as speech and gestures, are promoted in order to ease the user‟s load. Methods and hardware presented have been designed for the WorkPartner robot, but many of them are generic in nature and not dependent upon the robot physics.