Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution

Gordeyev, S.A. and Lees, G.B. and Dunkin, I.R. and Shilton, S.J. (2001) Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution. Polymer, 42 (9). pp. 4347-4352. ISSN 0032-3861

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A polysulfone spinning solution used recently to produce enhanced selectivity gas separation hollow fiber membranes was rheologically assessed using a rotational rheometer and an optical shear cell. Effects of temperature and shear rate on viscosity, power law behavior and normal force provided some clues regarding phase inversion and molecular orientation. At relatively low temperatures, phase inversion may occur in the absence of a shear field. At moderately low temperatures, phase inversion may be induced by applied shear. At higher temperatures, phase inversion is not induced by shear but rather shear induces molecular orientation. The results suggest that, unless spinning at low temperature, extrusion shear does not directly induce demixing during membrane formation but, instead, is linked indirectly to phase inversion through induced molecular orientation which, in turn, affects the subsequent dry or wet precipitation stages in spinning. This work is a step towards the construction of phase diagrams and determining their distortion in shear fields. Such knowledge, coupled with deeper insights into induced polymer molecule orientation, would enable further improvements in spinning techniques and membrane performance.

Item type: Article
ID code: 37602
Keywords: rheology, phase inversion, fiber spinning, hollow , Chemistry
Subjects: Science > Chemistry
Department: Faculty of Science > Pure and Applied Chemistry
Faculty of Engineering > Chemical and Process Engineering
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 13 Feb 2012 12:25
    Last modified: 16 Jul 2013 21:22
    URI: http://strathprints.strath.ac.uk/id/eprint/37602

    Actions (login required)

    View Item