Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Two-colour quantum entanglement in a singly resonant optical parametric oscillator approaching threshold

Cuozzo, Domenico and Oppo, Gian-Luca (2012) Two-colour quantum entanglement in a singly resonant optical parametric oscillator approaching threshold. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics. ISSN 1434-6060 (Unpublished)

[img]
Preview
PDF
sropo_paper_numerical_03.pdf - Preprint

Download (261kB) | Preview

Abstract

Following the analytical work of Ref. [1], a numerical analysis of squeezing and quantum entanglement in a continuous wave singly-resonant optical parametric oscillator approaching threshold is provided. The singly resonant case is mainly relevant to largely non-degenerate signal and idler modes (two-colour output). As the threshold of oscillation is approached the numerical spectra of the intensity difference confirm squeezing of quantum fluctuations and a progressive line-narrowing in the linear case. In the nonlinear case entanglement is confirmed although progressively reduced when approaching threshold with the squeezing spectra still displaying a narrowing of the spectral line. Modification of quantum entanglement approaching threshold is also evaluated via the condition of state inseparability.