Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Development of a nanosecond high energy KTA OPO operating at 2.9um

Vysniauskas, G. and Burns, D. and Bente, E.A.J.M. and Valentine, G.J. (2002) Development of a nanosecond high energy KTA OPO operating at 2.9um. In: Lasers and Electro-Optics, 2002. CLEO '02, 2002-01-01.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Summary form only given. We present the development of a KTA singly resonant optical parametric oscillator (OPO) with an unstable resonator. The OPO was pumped by a standard lamp-pumped, Q-switched, Nd:YAG laser (Continuum Surelight I) with 450 mJ output pulse energy in 5 ns pulses and 10 Hz repetition rate. The OPO was singly resonant for the idler wavelength, had an unstable resonator and was designed for optimal idler output energy of 30 mJ at 2.9 μm while minimising the linewidth of the free running OPO. The main reasons for choosing KTA were: low crystal loss in the wavelength range 2.6-3.2 μm; high non-linear coefficient; high optical damage threshold; low temperature sensitivity. KTA is also non-hygroscopic, and offers the possibility of critical phase matching with a high value of dλ/dθ which results in a narrow free running linewidth. The OPO system had a flexible design geometry incorporating the potential for both single- and double-pass of the pump beam through the 15 mm KTA crystal.

Item type: Conference or Workshop Item (Paper)
ID code: 37594
Keywords: optical losses , titanium compounds , potassium compounds , optical resonators , optical pumping , optical phase matching , optical parametric oscillators, optical materials , Physics
Subjects: Science > Physics
Department: Unknown Department
Faculty of Science > Institute of Photonics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 10 Feb 2012 16:50
    Last modified: 17 Jul 2013 15:08
    URI: http://strathprints.strath.ac.uk/id/eprint/37594

    Actions (login required)

    View Item