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Abstract

Collections of related Poisson or binomial counts arise, for example, from numbers of failures in
similar machines or neighbouring time periods. A conventional Bayesian analysis requires a rather
indirect prior specification and intensive numerical methods for posterior evaluations.

An alternative approach using Bayes linear kinematics [1] in which simple conjugate specifications
for individual counts are linked through a Bayes linear belief structure is presented. Intensive numer-
ical methods are not required. The use of transformations of the binomial and Poisson parameters is
proposed. The approach is illustrated in two examples, one involving Poisson counts of failures, the
other involving binomial counts in an analysis of failure times.
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1 Introduction

This paper is concerned with the analysis of collections of quantities with conditional binomial or Poisson
distributions. Such situations occur frequently. For example, [2] investigated the numbers of defects on
items in industrial experiments. The number of defects on each of thirty masks over each of eighteen runs
was assigned a Poisson distribution with the rate parameter given by the expected number of defects on
the item in that run. An example in [3] involved the numbers of ruptures in pipelines over six years. The
pipelines were categorised into eight systems by depth, diameter and site and were further categorised by
year. Each combination of system and year in these data corresponds to a Poisson random variable with
a mean specific to that system and that year. In [4] the number of successful starts of each of a collection
of emergency diesel generators (EDGs) for nuclear power stations followed a binomial distribution. The
number of trials was the number of demands for that EDG and the unknown parameter of interest was
the probability that the EDG started successfully.

In this paper a subjective analysis from the point of view of an interested party, termed “the expert”,
who has prior beliefs about the collection but who may, understandably, be unwilling or unable to specify
a complete joint prior probability distribution over the whole set of unknowns is considered. Typically the
individual binomial or Poisson parameters are not independent in the expert’s prior beliefs. For example,
in the case of the pipelines data, if a larger than expected number of ruptures were observed in one of
the systems in the first year this may very well lead to a revision upwards of the expected numbers of
ruptures in the same system in subsequent years.

Typically such data are analysed using a generalised linear model with, typically, the linear predictors
related via a linear model to a set of coefficients which are given a multivariate normal prior distribution.
See, for example, [5, 6]. Marginal predictive distributions are thus of rather complicated form, mak-
ing prior elicitation more difficult. Computation of posterior distributions requires numerical methods,
usually Markov chain Monte Carlo (MCMC). In this paper an alternative approach is proposed which
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gives conjugate marginal prior distributions to the unknown parameters of the binomial and Poisson
distributions. The parameters are transformed to map them onto the whole real line and then Bayes
linear methods are used to define a coherent covariance structure between these quantities. These are
examples of the type of structure termed a Bayes linear Bayes graphical model by [1]. Updates as a
result of observing data are achieved via Bayes linear kinematics, a form of Bayes linear analysis in which
changes in belief about certain quantities upon observation of data are propagated through to the other
quantities via Bayes linear updating rules.

The resulting analysis does not involve the use of a joint probability distribution for the transformed
parameters and thus focusses more directly on the quantities of interest, with a relatively simple structure
relating them, and, importantly, does not require the use of intensive numerical methods such as MCMC
to evaluate revised beliefs when data are observed. Moreover the structure is preserved in the same form
so that further updates can be made in the same way when more data are observed.

A brief review of generalised linear modelling approaches to collections of Poisson and binomial random
quantities is given in Section 2.1. Section 2.2 provides an overview of Bayes linear methods and Section
2.3 gives an introduction to Bayes linear kinematics. Sections 3 and 4 respectively outline the Bayes
linear kinematic approach as applied to failure rates and to failure time distributions in the form of life
tables.

2 Bayes linear kinematics and Bayes linear Bayes analysis for

count data

2.1 Generalised linear modelling

Counts Y1, . . . , Yn are observed. Suppose that the expert’s beliefs are such that, conditional on the values
of unknown parameters θ1, . . . , θn, either Yi ∼ Poisson(θi) or Yi ∼ bin(Ni, θi), where bin(Ni, θi) denotes
a binomial distribution with known number of trials Ni, for i = 1, . . . , n, and Yi, Yj are conditionally
independent given θi, θj for i 6= j.

Typically a link function g() is used to transform θi to a linear predictor ηi = g(θi) with −∞ < ηi <∞.
In a Poisson model the natural logarithm ηi = log(θi) is commonly used leading to log-linear models
([7, 8]). In a binomial model common link functions used are the logit, ηi = log(θi/[1 − θi]), probit,
ηi = Φ−1(θi), where Φ−1() is the inverse of the standard normal distribution function, and complemen-
tary log-log, ηi = log(− log[1 − θi]), link functions ([7, 9]). The linear predictors η = (η1, . . . , ηn)′ are
then related via a linear model η =Xγ to a vector of unknown coefficients γ which are then given a
multivariate normal prior distribution. This induces a multivariate normal prior distribution over η.
This non-conjugate structure makes prior elicitation awkward and requires intensive numerical methods
for posterior computation. The design matrix X contains the values of explanatory variables.

In this standard approach the likelihood and prior distributions are not conjugate. Therefore numerical
methods, usually MCMC, are necessary to evaluate posterior distributions. This can seem rather heavy
handed for apparently simple problems and can become a major obstacle in problems such as experimental
design [10]. In such situations a method for analysing related Poisson and binomial distributions without
the necessity for intensive numerical methods is desirable.

A problem which is closely related to the subject of this paper occurs in the analysis of non-Gaussian
time series. The dynamic generalised linear model was proposed by [11]. Suppose, for example, that the
observation Yt at time t has conditionally a binomial or Poisson distribution with parameter θt, given the
value of an unobserved state vector ωt. As a means of seeing how to use information from observations
in forecasting future observations, [11] suggest that a conjugate prior distribution for θt is interposed
between θt and ωt. The parameters of this prior distribution are determined by the first two moments of
a transformed unknown ηt = g(θt) where g() is a suitable link function. On observation of Yt a conjugate
update of the prior distribution for θt to the corresponding posterior distribution can be carried out and
this, in turn, changes the moments of ηt. A full Bayesian analysis would generally involve intractable
distributions for ωt. Instead [11] do not specify a distribution for ωt but work simply in terms of its first
two moments. On observation of Yt the moments of ωt are updated by a Bayes linear adjustment. The
state-evolution model then determines moments for ωt+1, the state vector at the next time step. This in
turn determines the moments for ηt+1 and therefore the parameters of the conjugate prior distribution
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for θt+1 and so on. (Note that the notation here differs from [11]). The approach which is adopted in
this paper is similar. However, whereas in the time-series context it is natural to think in terms of a
time-ordered sequence of observations, adjustments and so on, in other contexts there is no such fixed
ordering and, as described below, the question of commutativity with respect to the order of observations
arises.

2.2 Bayes linear methods

In a traditional Bayesian analysis a full joint prior distribution is specified for all observables and unknown
quantities such as parameters. Prior beliefs are then updated, by conditioning on the observations and
using Bayes theorem, and posterior distributions are calculated. A Bayes linear analysis [12] differs from
a full Bayesian analysis in that only first and second order moments are specified in the prior. Posterior
(termed adjusted) moments are then calculated.

For example, for each random quantity Q in the analysis, specifications of E0(Q) and Var0(Q), the
prior expectation and variance of Q, are made and for every two quantities Q1 and Q2 a prior covariance
Cov0(Q1, Q2) is also specified. Consider two vectors α = (α1, . . . , αp)

′ and β = (β1, . . . , βr)
′ where α is a

collection of quantities which shall be observed and β is a collection of quantities about which inferences
are to be made. Suppose that a full second order prior specification has been made for the set A = α∪β.

Bayes linear methods [12] offer a procedure by which beliefs about β are updated by a process of
linear fitting on α using the Bayes linear updating equations for the adjusted expectation and variance
of β given α:

E1(β; α) = E0(β) + Cov0(β,α)Var−1
0 (α)[α − E0(α)]

Var1(β; α) = Var0(β) − Cov0(β,α)Var−1
0 (α)Cov0(α,β),

when Var0(α) is invertible. When this matrix is not invertible a suitable generalised inverse such as the
Moore-Penrose inverse can be used.

2.3 Bayes linear kinematics

Probability kinematics [13] is a method for updating probabilities of further events E when beliefs about
the elements of a partition P change in some way. Bayes linear kinematics [1] is the corresponding
kinematic form of a Bayes linear analysis in which the effect of changes in belief about some quantities,
rather than actual observations on them, are propagated through to others within a Bayes linear structure.
Define the full second order prior specification for some vector random quantity Q to be

S0(Q) = [E0(Q),Var0(Q)],

where E0(Q) is a vector of prior expectations and Var0(Q) is a prior covariance matrix. Suppose that,
rather than directly observing α in the previous section, data are observed which simply change beliefs
about α in some way. Thus the second order specification is now S1(α) rather than S0(α). Then the
specification S1(A) is a Bayes linear kinematic update [1] if it satisfies

E0(β; α) = E1(β; α), Var0(β; α) = Var1(β; α),

where Ei(β; α) and Vari(β; α) are the Bayes linear adjusted expectation and variance of β given α

using Si(A). These conditions lead to the Bayes linear kinematic updating equations:

E1(A) = E0(A) + Cov0(A,α)Var−1
0 (α)[E1(α) − E0(α)], (1)

Var1(A) = Var0(A; α) + Cov0(A,α)Var−1
0 (α)Var1(α)Var−1

0 (α)Cov0(α,A). (2)

This is also the case if A is replaced by β in the above equations. Now consider the situation in which
there are p collections of random quantities U1, . . . ,Up where Uk = (Uk1, . . . , Uknk

)′ for k = 1, . . . , p.
Suppose that a full second order prior specification has been made for U = U1 ∪ . . . ∪ Up of the form
S0(U) = [E0(U),Var0(U)] and that data information Ik is received which causes the beliefs about Uk
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to be updated to S1(Uk; Ik) = [E1(Uk),Var1(Uk)]. Then, as in (1) and (2), the Bayes linear kinematic
update for U is

E1(U ; Ik) = E0(U) + Cov0(U ,Uk)Var−1
0 (Uk)[E1(Uk) − E0(Uk)], (3)

Var1(U ; Ik) = Var0(U ; Ik) + Cov0(U ,Uk)Var−1
0 (Uk)Var1(Uk)Var−1

0 (Uk)Cov0(Uk,U). (4)

Now suppose that data are observed and beliefs updated once for each of k = 1, . . . , p. A Bayes linear
kinematic update can be made for U each time. As in probability kinematics, successive Bayes linear
kinematic updates are not necessarily commutative. However, [1] give conditions under which the re-
quirement of commutativity leads to a unique Bayes linear kinematic update. In the analyses in this
paper each Uk is always a scalar Uk and a sufficient condition for a unique commutative update is

Var−1
0 (Uk)Var1(Uk) < 1, (5)

for all k = 1, . . . , p. This solution, when it exists, is given by

Ep(U ; I1, . . . , Ip) = Varp(U)

[

p
∑

k=1

Var−1
1 (U ; Ik)E1(U ; Ik) − (p− 1)Var−1

0 (U)E0(U)

]

, (6)

Varp(U ; I1, . . . , Ip) =

[

p
∑

k=1

Var−1
1 (U ; Ik) − (p− 1)Var−1

0 (U)

]−1

. (7)

2.4 Bayes linear Bayes analysis for count data

2.4.1 Conjugate Bayesian updates

If Yi | θi ∼ Poisson(θi) then the natural conjugate prior distribution is a gamma(ai, bi) distribution and,
given an observation yi, the posterior distribution is gamma(ai + yi, bi + 1). More generally a known
scale factor si, perhaps the time at risk, could be included. In this case Yi | θi ∼ Poisson(siθi) and the
posterior distribution is gamma(ai + yi, bi + si), with si = 1 as a special case. The prior mean and
variance are

E0(θi) =
ai

bi
, Var0(θi) =

ai

b2i
(8)

and the posterior mean and variance are

E1(θ1) =
ai + yi

bi + si
, Var1(θi) =

ai + yi

(bi + si)2
.

Notice that the posterior variance can be greater than the prior variance if yi is sufficiently large.
If Yi | θi ∼ bin(Ni, θi) then the natural conjugate prior is a beta(ai, bi) distribution and, given an

observation yi, the posterior distribution is beta(ai + yi, bi +Ni − yi). The prior mean and variance are

E0(θi) =
ai

ai + bi
, Var0(θi) =

aibi
(ai + bi)2(ai + bi + 1)

(9)

and the posterior mean and variance are

E1(θi) =
ai + yi

ai + bi +Ni
, Var1(θi) =

(ai + yi)(bi +Ni − yi)

(ai + bi +Ni)2(ai + bi +Ni + 1)
.

Again it is possible for the posterior variance to be greater than the prior variance, for example with
ai = 7, bi = 1, Ni = 4, yi = 2.
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2.4.2 Use of transformations

It would be possible to proceed by linking the parameters θ1, . . . , θn in a Bayes linear structure. However
there are advantages in transforming the parameters first. The transformed parameters η1, . . . , ηn are
then linked in a Bayes linear structure. Observing Yi changes the mean and variance of ηi and the effect
of this change is propagated by Bayes linear kinematics. The reasons for using the transformation are as
follows. Firstly, in both cases, the range of θi is bounded. In the Poisson case 0 < θi and, in the binomial
case, 0 < θi < 1. The combination of linear updates with bounded parameter spaces seems undesirable
both in terms of first and second moments. If information leads to adjustment of the expectation for
a quantity towards a boundary, it seems clear that this adjustment should not continue to be linear as
the boundary is approached. It is to be expected that variances will be affected by the proximity of a
boundary and beliefs, when the mean is close to a boundary, will no longer be symmetric in the sense
that deviations from the mean in either direction would be regarded in the same way. Similarly there are
difficulties with covariances in bounded spaces where the tendency would be to imagine rather nonlinear
relationships between unknowns close to boundaries. So it is desirable to transform the parameters
onto unbounded spaces. Secondly, as seen above, it is possible for the variances of the untransformed
parameters θi to increase when data are observed. While [1] (Theorem 5) give conditions for the existence
of unique Bayes linear kinematic updates which allow some such variance increase, the transformations
have the effect of making reductions in variance of the transformed parameters occur when observations
are made, at least in most circumstances, and therefore allow use of the simpler sufficient condition given
in Corollary 4 of [1].

Bayes linear kinematics, without transformation, gives a rule for adjusting beliefs about θ1, . . . , θn by
Bayes linear updates. Similarly Bayes linear kinematics, with the transformation, gives a Bayes linear rule
for updating beliefs about η1, . . . , ηn, where there is a 1 - 1 relationship between ηi and θi. Any further
use of conjugate Bayesian updating of beliefs about θj , given observation of Yj , after already adjusting
by observation of Yi, relies on the idea that θj still has a distribution of the required conjugate form,
whether or not a transformation is used. Similarly evaluating predictive distributions for new observations
or credible intervals for θ1, . . . , θn depends on such an idea. Additionally, when a transformation is used,
this preserved conjugate form is required in order to convert back from the adjusted moments of ηj to
the new distribution for θj .

Clearly, if adjustments were only ever made in one direction, eg. of beliefs about θj by observing Yi, and
this was never reversed to adjust beliefs about θi by observing Yj , then it could simply be declared that the
conditional distribution was the required conjugate distribution. (Such one-way belief adjustment might
be appropriate, for example, in a time-series forecasting context, as in [11]). When commutativity, in the
strong sense that conjugate updates of the marginal distributions of θ1, . . . , θn are always appropriate, is
required then this might be regarded as a pragmatic approximation which does not correspond exactly to
a full Bayesian conditioning analysis. With no transformation, this assumption is made directly on the
distributions of θ1, . . . , θn under Bayes linear kinematic updates. With transformation, the assumption
applies to the corresponding distributions of η1, . . . , ηn, eg, log-gamma distributions, in the same way.

2.4.3 Transformations in the Poisson and binomial cases

In the Poisson case the transformation ηi = log(θi) is used. It is necessary to work with moments for
both θi for the conjugate updates and ηi for the Bayes linear kinematic updates. The expectation and
variance of θi are found using (8). The expectation and variance of ηi can be found using the fact that

1

Γ(ai)

dr

dar
i

Γ(ai) =

∫ ∞

0

[log(z)]r
zai−1e−z

Γ(ai)
dz = E{[log(biθi)]

r}.

Setting r = 1 gives

E0(ηi) + log(bi) = E0{log(biθi)} =
d

dai
{log[Γ(ai)]} = ψ(ai)

where ψ() is the digamma function. Setting r = 2 gives

d2

da2
i

Γ(ai) =
d

dai
Γ(ai)ψ(ai) = Γ(ai)ψ1(ai) + Γ(ai)ψ(ai)

2,
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where ψ1(x) = d
dxψ(x) is the trigamma function. Thus

Var0(ηi) = Var0(log biθi) = E0[(log biθi)
2] − E0[log biθi]

2

= ψ1(ai) + ψ(ai)
2 − ψ(ai)

2 = ψ1(ai).

After the conjugate updates the expectations and variances of both θi and ηi remain of the same form
but with ai and bi replaced with ai + yi and bi + 1 respectively. Thus for ηi they are

E(ηi | Yi = yi) = ψ(ai + yi) − log(bi + 1)

Var(ηi | Yi = yi) = ψ1(ai + yi).

Suppose that a full second order prior specification has been made for η = (η1, . . . , ηn)′ of the form
S0(η) = (E0(η),Var0(η)). Observing Yi = yi leads to the Bayes linear kinematic adjusted expectation
and variance for η of

E1(η; Yi = yi) = E0(η) + Cov0(η, ηi)Var−1
0 (ηi) [E(ηi | Yi = yi) − E0(ηi)] ,

and

Var1(η; Yi = yi) = Var0(η) − Cov0(η, ηi)Var−1
0 (ηi)Cov0(ηi,η)

+ Cov0(η, ηi)Var−1
0 (ηi)Var0(ηi | Yi = yi)Var−1

0 (ηi)Cov0(ηi,η).

which depend only on the prior specifications and fully Bayesian conjugate updates which have already
been calculated. Here, for example, E1(η; Yi = yi) denotes the adjusted expectation after 1 observation
has been made and the observation is given after the semicolon.

Now consider whether, having observed y = (y1, . . . , yn)′, there is a unique commutative Bayes linear
kinematic update for η. From [1] a unique commutative solution exists if

Var−1
0 (ηi)Var(ηi | Yi = yi) < 1

for all i. The variances are Var0(ηi) = ψ1(ai) and Var(ηi | Yi = yi) = ψ1(ai + yi). Each yi must be a
nonnegative integer. The trigamma function is monotonically decreasing on R+ and ψ1(x) → 0 as x→ ∞
so, as long as yi > 0 for each i, Var(ηi | Yi = yi) < Var0(ηi) for all i and the uniqueness condition is met.
If this is the case then the Bayes linear kinematic unique commutative solution is

En(η; Y = y) = Varn(η; Y = y)

[

n
∑

i=1

Var−1
1 (η; Yi = yi)E1(η; Yi = yi) − (n− 1)Var−1

0 (η)E0(η)

]

Varn(η; Y = y) =

[

n
∑

i=1

Var−1
1 (η; Yi = yi) − (n− 1)Var−1

0 (η)

]−1

.

In fact, it is easily seen that these equations define a commutative update even if yi = 0 for some i and
this case satisfies the more general conditions in Theorem 5 of [1]. Hence the commutative update always
exists in the gamma-Poisson case.

Having found the revised expectations and variances of every ηi, the means and variances of θi can
be found by first solving the following equations for a∗i and b∗i .

En(ηi; Y = y) = ψ(a∗i ) − log(b∗i )

Varn(ηi; Y = y) = ψ1(a
∗
i ).

The revised mean and variance of θi are then

En(θi; Y = y) =
a∗i
b∗i
, Varn(θi; Y = y) =

a∗i
b∗2i

.

In the binomial case any of the usual link functions µi = g(θi) might be suitable. However the moments
of µi are generally not straightforward so, for the Bayes linear kinematic updates the use of a related
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quantity ηi, is proposed, which has mean and variance found from the mode of µi and the curvature at
the mode of the log density of µi. Thus the link function is regarded as a “guide relationship” ([11]).
For example, with the logistic link function, µi = log[θi/(1 − θi)] and a beta(ai, bi) distribution for θi,
it is easily shown that the mode of µi, that is the mean of ηi, is mi = log(ai/bi) and the corresponding
variance is Var(ηi) = a−1

i + b−1
i . This variance clearly decreases when any observation yi is made.

For the failure-time application, as discussed in Section 4 below, the complementary log-log link
function is chosen as it is more convenient for computation of the reliability R(t) = Pr(T ≥ t), where T
is a lifetime. Hence

µi = g(θi) = log[− log(1 − θi)]. (10)

If θi ∼ beta(ai, bi), with density fθ,i(θi), and µi = log[− log(1 − θi)] then the density of µi is

fµ,i(µi) = fθ,i(θi)
dθi

dµi
=

Γ(ai + bi)

Γ(ai)Γ(bi)
eµi exp[−eµi ]θai−1

i (1 − θi)
bi−1.

Taking logs,

li(µi) = log{fµ,i(µi)} = ki + µi − eµi + (ai − 1) log(θi) + (bi − 1) log(1 − θi)

where ki is a constant. To find the mode, mi,

(

dli(µi)

dµi

)

mi

= 1 − emi +

[

(ai − 1)

θm,i
−

(bi − 1)

1 − θm,i

]

emi exp[−emi ] = 0, (11)

where θm,i = 1 − exp[−emi ], is solved numerically. The second derivative is

d2li(µi)

dµ2
i

= −eµi −

[

(ai − 1)

θ2i
+

(bi − 1)

(1 − θi)2

]

e2µi exp[−2eµi ]

+

[

(ai − 1)

θi
−

(bi − 1)

1 − θi

]

eµi(1 − eµi) exp[−eµi ]. (12)

The mean and variance of ηi can then be found as

E(ηi) = mi, Var(ηi) = −

[

d2li(µi)

dµ2
i

]−1

mi

.

Having made the conjugate updates, the same procedure can be applied but using Ai = ai + yi and
Bi = bi +Ni − yi in place of ai and bi in the density and subsequent derivatives. Defining a Bayes linear
structure for η1, . . . , ηp, i.e., specification of Cov0(η), allows the updates to be propagated to the other
quantities in η via (3) and (4). Note that, once an adjusted mean and precision for ηj are found, (11)
and (12) provide simultaneous linear equations in a∗j and b∗j , the new values of aj and bj , which are easily
solved.

From (5) there is a unique commutative solution to the problem using Bayes linear kinematics if
Var−1

0 (ηi)Var(ηi | yi) < 1, ∀i. An analytic proof that this condition always holds is not yet available.
However this has been investigated numerically. It is only necessary to consider the effect of a single
observation y = 1 with N = 1. This is because this is equivalent to the observation y = 0 with N = 1
with a and b exchanged and any observation with larger N has the cumulative effect of a sequence of
observations with N = 1. The increase in the precision of ηi given an observation yi = 1 with Ni = 1 was
investigated over a rectangular grid of values of (ai, bi) with −1 ≤ log(ai) ≤ 12 and −1 ≤ log(bi) ≤ 12 in
steps of 0.1 and every value was positive.

3 Bayes linear kinematics for failure rates

3.1 Example: failure rates of piston-rings

Data are presented in [14], reproduced in [15], on the numbers of failures of piston-rings in four steam
driven compressors over a number of years. Within each compressor there are three legs: north (i = 1),
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Table 1: ABOUT HERE

centre (i = 2) and south (i = 3). The south leg of each compressor is adjacent to the drive. The numbers
of failures Yij in each leg i of each compressor j are given in Table 1.

Questions of interest for these data are

1. whether the rate of piston-ring failures varies between compressors

2. whether the rate of piston-ring failures varies between legs

3. whether the pattern of the location of failures is different for different compressors.

Given θij , Yij | θij ∼ Poisson(θij). Let ηij = log(θij). There are twelve conjugate updates to perform,
one for each element of Y = (Y11, . . . , Y14, Y21, . . . , Y24, . . . , Y34)

′.

3.2 Elicitation of prior beliefs

Now consider the process of specification of the expert’s prior beliefs. Some general advice on elicitation
is given in [16, 17, 18, 19]. Generally at least two statistics are elicited for each quantity of interest, one
measure of centrality and at least one of spread. Quantiles are commonly chosen as non-statisticians
tend to assess medians better than means for skewed distributions ([19, 20, 21]) and are generally poor at
assessing variances. Whilst upper and lower quartiles are the most commonly used quantiles to estimate
the spread of a distribution, [17, 22] recommend eliciting tertiles (33% and 67% points) as there is evidence
this can reduce overconfidence.

In terms of the piston-rings example the elicitation process consists of finding the parameters aij , bij
of the marginal gamma distributions and eliciting prior covariances between the ηij ’s.

3.2.1 Elicitation of prior expectations and variances

To find aij and bij , quantiles can be elicited for the gamma prior distribution of θij and, following [17],
the median qij(1/2) and lower and upper tertiles qij(1/3) and qij(2/3) are chosen. To perform these
elicitations questions are put to the expert in terms of the average number of failures per unit time over
a very long period.

The compressors are identically designed and are all oriented the same way. Suppose that, a priori,
there is no reason to believe any leg of any compressor would be more prone to failures than any other.
Thus the marginal elicitation process reduces to eliciting a single median q(1/2) and a single lower and
upper tertile q(1/3) and q(2/3) for the failure rate θ in any leg of any compressor. Since three elicitations
(q(1/3), q(1/2), q(2/3)) are made to determine two parameters a, b, in general there is no exact solution.
However, in the case of the gamma distribution, the ratio of upper and lower tertiles, q(2/3)/q(1/3)
depends only on the shape parameter a and a numerical method can be used to find a value for a from
this ratio. The elicited median q(1/2) can then be used to find b.

3.2.2 Elicitation of prior covariances

To complete the second order prior specification, covariances for η must be specified. This is achieved
by eliciting quantities involving the θij ’s. For each pair θij and θkl with (i, j) 6= (k, l), a prior covariance
Cov0(ηij , ηkl) is required. This covariance is elicited by asking the expert to suppose that the value of
θkl, the population average number of piston-ring failures per unit of time over a very long period, is now
known and indicating that this has left the median for θij unchanged at qij(1/2). New tertiles, q′ij(1/3)
and q′ij(2/3), are then elicited for θij having learned θkl.

From these the parameters a′ij , b
′
ij of the gamma distribution can be found as when making the

marginal prior specifications. Thus θij | θkl ∼ gamma(a
′

ij , b
′

ij). If the expert judges that θij and θkl

are unrelated then q′ij(1/3) = qij(1/3) and q′ij(2/3) = q′ij(2/3) i.e., the elicited tertiles would remain
unchanged as nothing has been learned about θij by learning θkl. If the expert judges that there is a
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relation between θij and θkl then q′ij(1/3) > qij(1/3) and q′ij(2/3) < qij(2/3) i.e., the elicited tertiles will
have moved closer together indicating a reduction in uncertainty about θij having learned θkl. The closer
together the tertiles become, the stronger the association between the two quantities.

Transforming back to ηij gives Var(ηij | ηkl) = ψ1(a
′

ij) and since

Var(ηij | ηkl)

Var0(ηij)
= 1 −

Cov2
0(ηij , ηkl)

Var0(ηij)Var0(ηkl)
,

the modulus of the required prior covariance can be found. The sign of the covariance is determined
by asking whether the expert’s expectation for θij would increase or decrease upon learning that θkl

was greater than expected. This method is based on that which was used in the projects described in
[23, 24, 18].

3.3 Results

Suppose that the expert settles on values of q(1/3) = 11 and q(2/3) = 20 for the lower and upper tertiles
following the elicitation process. This leads to a = 2.441. If the expert also gives a median q(1/2) = 15,
b is found to be 0.1411. If the four compressors are judged to be exchangable and the legs within each
compressor are also regarded as exchangable (which, of course, might not be the case), the elicitation of
a covariance structure can be reduced to the specification of three different covariances:

Cov0(ηij , ηkl) =











c1, when i = k, j 6= l,

c2, when i 6= k, j = l,

c3, when i 6= k, j 6= l.

Table 2 shows an example of elicited adjusted tertiles in the above three cases and the resulting adjusted
gamma parameter values and covariances and correlation of ηij .

Table 2: ABOUT HERE

A unique commutative Bayes linear kinematic solution can be found in this example. For this solution
the adjusted values of the gamma parameters are calculated. Figure 1 shows the adjusted expectations

Figure 1: ABOUT HERE

of the θij ’s and adjusted 95% symmetric credible intervals for each of the 12 legs. The dashed line on the
plot is the observed mean number of piston-ring failures in the time period, 166/12.

Table 3: ABOUT HERE

The first four locations correspond to the north leg, the next four to the centre leg and the final four
to the south leg. A full list of locations along with posterior moments are given in Table 3. It appears
that location 12, the south leg of compressor 4, has an unusually high rate of piston-ring failures.

In this example, a unique commutative Bayes linear kinematic adjustment also exists if the trans-
formation is not used. The bracketed figures in Table 3 show the results. The prior specification was
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derived from the same elicited tertiles as in the analysis with the transformation. The results are similar
but generally a little lower. It seems that the effect of the observations which are less than the prior
mean may be greater when no tansformation is used. While such an analysis without transformations is
possible in this example, and will be possible in many cases, there will exist examples where it is not.

4 Bayes linear kinematics for failure time distributions

4.1 Applying Bayes linear kinematics to life table data

The second application is to the analysis of failure times. In this paper only the case where failure times
are grouped into intervals as in a life table is considered. The authors intend to address the case of non-
grouped data in a future paper. The analysis of time-to-event data is important in other fields as well as
engineering, particularly in survival analysis in medicine. Information on Bayesian survival analysis can
be found in [25] and [26].

Suppose that failure times are classified into p intervals so that interval i is [ti, ti+1) for i = 1, . . . , p
with t1 = 0 and tp+1 = ∞. Suppose initially that there is no censoring so an interval is recorded for
the failure of every item. Let the number of failures of items in interval i be yi and the number of items
which have not failed at the start of interval i be Ni. Then Ni = Ni−1 − yi−1.

Given a parameter θi, the number of failures in interval i follows a binomial distribution

yi | θi ∼ bin(Ni, θi),

where θi is the unknown population probability that an item fails in interval i given that it has not failed
by time ti. A beta prior θi ∼ beta(ai, bi) is adopted. Observation of yi failures in interval i leads to a
within interval update of θi | yi ∼ beta(Ai, Bi), where Ai = ai + yi and Bi = bi + Ni − yi. The prior
expectation and variance of θi are given by (9) with the posterior counterparts E(θi | yi) and Var(θi | yi)
the same but using Ai and Bi instead of ai and bi.

In this application there is interest in the reliability function R(t) = Pr(T ≥ t), where T is a lifetime.
This can be expressed at each of the interval boundaries in terms of the conditional probabilities of failure
up to that interval. That is

R(ti) = Pr(T ≥ ti) =

i−1
∏

j=1

(1 − θj).

Hence

log[R(ti)] =
i−1
∑

j=1

log(1 − θj).

Therefore it would appear to be convenient to work in terms of the transformed quantity µj = − log(1−θj).
However this quantity is still bounded below at zero and, in fact, will often be close to the boundary.
Therefore the complementary log-log link function is chosen to remove the boundary effect. Hence
µi = g(θi) = log[− log(1 − θi)].

As discussed in Section 2.4.3 a unique commutative Bayes linear kinematic solution exists at least
over a wide range of prior specifications. It can be made sequentially in time by rearranging (6) and (7)
to

Var(i)(η) =
(

Var−1
(i−1)(η) + Var−1

i (η) − Var−1
0 (η)

)−1

E(i)(η) = Var(i)(η)
(

Var−1
(i−1)(η)E(i−1)(η) + Var−1

i (η)Ei(η) − Var−1
0 (η)E0(η)

)

,

where E(i)(η), Var(i)(η) denote the adjusted expectation and variance after observing y1, . . . , yi and
Ei(η), Vari(η) are the adjusted moments after observing just yi.

Using the complementary log-log link function gives

log[R(ti)] = −

i−1
∑

j=1

exp(µj).
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To see what might reasonably be concluded about this quantity, the guide relationship (10) can again be
considered. After observing data it might be reasonable to suppose that the result of such a nonlinear
transformation is approximated by what happens if η has a multivariate normal distribution and log(1−
θi) = − exp(ηi). So exp(µ) | y can be regarded as having approximately the moments of a multivariate
lognormal distribution. If E(ηi) = Mi, Var(ηi) = Vii and Cov(ηi, ηj) = Vij then, following this guideline
and writing wi = − log[1 − θi] = exp(ηi),

E(wi) ≈ eMi+Vii/2, Var(wi) ≈ e2Mi+Vii(eVii − 1), Cov(wi, wj) ≈ eMi+Mj+(Vii+Vjj)/2(eVii+Vjj+2Vij − 1).

The approximate mean and variance of −
∑i−1

j=1 wj are then easily found.

4.2 Right Censoring

Non-informative right censoring can easily be introduced into this method using the actuarial assumption.
If ri is the number of right censored observations in interval i then the number of items which have not
failed by the start of the interval is Ni = Ni−1 − yi−1 − ri−1. By the actuarial assumption, the number
of items at risk on average in interval i, N

′

i is N
′

i = Ni − ri/2. The binomial distribution given to yi is

then yi ∼bin(N
′

i , θi), and the analysis proceeds exactly as in the case of no censoring above.

4.3 Example: Centrifuge cloths

Data are given in [27] on the failure times of sugar centrifuge cloths. In all there are 229 cloths and all
fail within 78 weeks. There is no censoring in the data. The data are presented in Table 4.

Table 4: ABOUT HERE

As for the piston-rings example, the elicitation process contains two stages: elicitation of the median
and tertiles for the marginal beta distributions and elicitation of a coherent covariance structure for η.
The marginal elicitation process is very similar to that for the piston-rings example. The parameters ai, bi
of the marginal beta distributions are found from the elicited median and tertiles. Details are omitted.

The prior values for the ai’s and the bi’s resulting from the elicitation process are given in Table 5.

Table 5: ABOUT HERE

Covariances between different elements of η can be elicited using a method similar to that used in
the piston-rings example. The expert can be asked to imagine knowing the value of θi, from a very large
experiment, and provide revised tertiles for θj given that the “true” value of θi was found to be equal
to its prior median. As in the Poisson case, this leads to a calculation of the reduction in variance of ηj

given knowledge of ηi and hence to the covariance of ηi and ηj .
However, with a large number of intervals it may be unappealing to consider all of the covariances

individually. It may also be difficult to avoid accidental incoherence in the resulting covariance matrix.
In any case it may well give more satisfactory results to adopt a more structured approach. Therefore
ideas from [18] are used to give Var0(η) a more structured form.

For example, bearing in mind the ordering of the time intervals, uncertainties about η might well
be represented by a stationary process. Let Fi = ηi − E0(ηi) so that Fi is a zero expectation quantity

11



which depends on time. Then F1, . . . , Fp can be linked via a stationary process such as a first order
autoregression, in which case

Fi = φFi−1 + εi, (i = 2, . . . , p)

where E(εi) = 0, E(ε2i ) = vε and E(εiεj) = 0 for i 6= j. For stationarity the initial variance of F1 is set
at the stationary value

Var0(F1) =
vε

1 − φ2
= vF .

The covariances between η1, . . . , ηp are now given by Cov0(ηi, ηj) = φ|j−i|vF . Thus covariances are weaker
for intervals which are further apart. If a small number of covariances are elicited directly, the parameters
can then be adjusted until the expert is happy with the result. Note that using a stationary process in
this way implies that all of the variances of η1, . . . , ηp are equal and this is likely to require a process of
iterative adjustment of the assessed values of ai and bi. It is felt, however, that such a process is likely to
lead to better prior assessments overall. Note also that this example illustrates an advantage of working
in terms of the transformed quantities ηj since stationarity of beliefs would be implausible when working
directly in terms of θj .

For the example the values vF = 0.453, φ = 0.97 were adopted and therefore vε = 0.0268.
The conjugate updates take place using Ai = ai +yi and Bi = bi +Ni−yi in place of ai and bi in (11),

(12) to calculate E(ηi | yi) and Var(ηi | yi) respectively. These are then used in (3), (4) to calculate the
Bayes linear kinematic update for η at each stage: E1(η; yi) and Var1(η; yi). The unique commutative
Bayes linear kinematic solution is then given by

Var(29)(η) =

(

29
∑

i=1

Var−1
1 (η; yi) − 28Var−1

0 (η)

)−1

E(29)(η) = Var(29)(η)

(

29
∑

i=1

Var−1(η; yi)E1(η; yi) − 28Var−1
0 (η)E0(η)

)

.

Having performed the updates, posterior parameter values are found and are given in Table 6. It is
clear that there has been a significant reduction in uncertainty upon observation of the data.

Table 6: ABOUT HERE

5 Conclusions

In this paper two applications of Bayes linear kinematics have been investigated, the first being the
modelling of related Poisson distributions and the second in the analysis of life table data. In both cases
taking transformations which mapped parameters onto an unrestricted scale allowed for more effective
Bayes linear kinematic updates to be made by working on a scale in which linear fitting is more appro-
priate. Further, they allowed general comments to be made about when a unique commutative Bayes
linear kinematic solution exists.

In the life table model a complementary log-log transformation was used as this allowed for a fairly
straightforward calculation of the reliability function. Of course with the binomial distribution several
transformations are possible.

The commutativity provided by the Bayes linear kinematic updates could be useful in situations where
commutative solutions to problems do not currently exist. For example, in time series, they may provide
an alternative to the non-commutative updates in the dynamic generalised linear models of [11] and, in
survival analysis, to the dynamic Bayesian models of [28]. The authors intend to describe an application
of the method to non-grouped lifetime data using an approach related to that of [28] in a future paper.
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The use of Bayes linear kinematics avoids the necessity of using intensive numerical methods for
posterior evaluations. As a result Bayes linear kinematics could have a role to play in the field of Bayesian
experimental design and the authors intend to investigate this. In problems relating to the design of
experiments the goal often is to maximise a function of utilities. In order to do this integrations have to be
performed many times for different values of the design parameters. If each of these integrations requires
Markov chain Monte Carlo methods then the analysis can quickly become computationally infeasible. A
Bayes linear kinematic analysis provides an alternative approach in which posterior moments would be
straightforwardly calculable even for complicated problems.

Apart from these computational advantages, of course, the Bayes linear kinematic approach makes
careful assessment of genuine beliefs about relationships between quantities a practical proposition with-
out the imposition of artificial distributional assumptions. Additional assumptions or approximations
are required to interpret the results in terms of observable quantities or their untransformed moments
but these are comparable to approximations which are traditionally used, for example, for confidence
intervals for parameters of lifetime distributions.
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Tables

Leg
Compressor North Centre South Total

1 17 17 12 46
2 11 9 13 33
3 11 8 19 38
4 14 7 28 49

Total 53 41 72 166

Table 1: Piston-ring failures.

Case (h) t
′

L t
′

U a′ b′ ch ρh

1 12 18.5 4.412 0.2722 0.356 0.704
2 11.75 18.75 3.824 0.2331 0.322 0.639
3 11.25 19.25 2.960 0.1756 0.229 0.453

Table 2: Elicitation of covariances ch and correlations ρh in cases h = 1, 2, 3.

Compressor
Location and leg Posterior mean 95% interval

1 1 North 16.033 (15.541) 10.347 (9.809) 22.944 (22.569)
2 2 North 11.544 (11.537) 6.914 (6.658) 17.342 (17.733)
3 3 North 12.133 (12.007) 7.278 (7.094) 18.208 (18.191)
4 4 North 14.632 (14.349) 9.145 (8.964) 21.389 (20.979)
5 1 Centre 14.474 (13.997) 9.309 (8.365) 20.761 (21.055)
6 2 Centre 9.472 (9.347) 5.464 (4.883) 14.566 (15.236)
7 3 Centre 9.655 (9.246) 5.477 (4.918) 14.997 (14.919)
8 4 Centre 10.494 (9.390) 5.854 (5.186) 16.466 (14.821)
9 1 South 16.062 (14.961) 9.831 (9.745) 23.798 (21.278)
10 2 South 14.252 (14.072) 8.793 (8.806) 21.007 (20.553)
11 3 South 17.664 (17.082) 11.603 (11.111) 24.979 (24.315)
12 4 South 23.898 (20.927) 16.701 (14.184) 32.365 (28.961)

Table 3: E(θij ; Y = y) and 95% symmetric credible intervals for the 12 locations. The figures in
brackets refer to an analysis without using transformations.
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i Weeks Ni yi i Weeks Ni yi i Weeks Ni yi

1 [0,2) 229 24 11 [20,22) 55 12 21 [40,42) 12 2
2 [2,4) 205 36 12 [22,24) 43 5 22 [42,44) 10 2
3 [4,6) 169 27 13 [24,26) 38 4 23 [44,46) 8 2
4 [6,8) 142 23 14 [26,28) 34 4 24 [46,50) 6 0
5 [8,10) 119 15 15 [28,30) 30 1 25 [50,52) 6 4
6 [10,12) 104 9 16 [30,32) 29 4 26 [52,56) 2 0
7 [12,14) 95 12 17 [32,34) 25 4 27 [56,58) 2 1
8 [14,16) 83 11 18 [34,36) 21 5 28 [58,76) 1 0
9 [16,18) 72 13 19 [36,38) 16 2 29 [76,78) 1 1
10 [18,20) 59 4 20 [38,40) 14 2

Table 4: The failure times of centrifuge cloths.

i ai bi i ai bi i ai bi
1 2.206 23.530 11 2.207 13.901 21 2.212 7.916
2 2.206 22.356 12 2.208 13.167 22 2.213 7.459
3 2.206 21.229 13 2.208 12.463 23 2.214 7.025
4 2.206 20.152 14 2.208 11.797 24 2.215 6.613
5 2.207 19.128 15 2.209 11.160 25 2.216 6.218
6 2.207 18.153 16 2.209 10.552 26 2.217 5.843
7 2.207 17.214 17 2.210 9.943 27 2.219 5.485
8 2.207 16.329 18 2.210 9.422 28 2.220 5.143
9 2.207 15.481 19 2.211 8.894 29 2.222 4.817
10 2.207 14.671 20 2.211 8.395

Table 5: Prior marginal parameter values for centrifuge cloths.

i ai bi i ai bi i ai bi
1 46.811 307.394 11 35.312 229.984 21 17.137 132.024
2 70.365 398.553 12 29.495 208.556 22 16.091 123.654
3 66.580 379.546 13 26.095 195.514 23 14.917 114.216
4 59.691 355.585 14 23.954 185.460 24 13.490 103.069
5 49.315 327.076 15 21.860 172.720 25 13.093 98.747
6 42.225 302.348 16 22.688 175.539 26 10.926 85.579
7 42.424 296.904 17 22.803 172.466 27 9.642 77.917
8 41.360 280.024 18 22.235 165.332 28 8.397 69.988
9 40.276 261.804 19 19.745 150.169 29 7.556 64.539
10 33.793 229.087 20 18.251 140.299

Table 6: Posterior marginal parameter values for centrifuge cloths.
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Captions for Figures

Figure 1: Adjusted means and 95% symmetric credible intervals for θij at the 12 locations.
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APPENDIX

Notation

c1, c2, c3 Covariances in the piston-rings example.
E0, Var0,Cov0 Prior expectation, variance, covariance.
E1, Var1,Cov1 Posterior expectation, variance, covariance.
Ek, Vark,Covk Expectation, variance, covariance after observing Yk = yk.
f0() A prior density function.
F1, . . . , Fp Autoregressive uncertainty factors for transformed parameters in

the lifetimes example.
g() Link function.
l(µ) The log density of µ.
mi The mode of µi and mean of ηi.
Mi Mean of transformed parameter in lifetimes example.
N1, . . . , Nn Numbers of trials for binomial distributions.
qi(1/2), qi(1/3), qi(2/3) Median and lower and upper tertiles.
Q, Q1, Q2 Unknown quantities in a Bayes linear analysis.
R(t) Reliability function.
s1, . . . , sn Known scale factors for Poisson means.
S0, S1 Prior and posterior Bayes linear (second order) specifications.
t1, . . . , tp+1 Time-interval boundaries in the lifetimes example. (tp+1 = ∞).
U = (U1, . . . ,Up) Unknowns in a Bayes linear kinematic analysis.
Uk = (Uk1, . . . , Uknk

) Unknowns in a Bayes linear kinematic analysis.
vε, vF Innovation variance, stationary variance

for uncertainty factors in the lifetimes example.
Vii, Vij Variance, covariance of transformed parameters in lifetimes example.
wi = − log[1 − θi] = exp(ηi) Quantity used in inference about reliability in lifetimes example.
X A design matrix.
y = (y1, . . . , yn)′ Observed values.
Y = (Y1, . . . , Yn)′ Observable counts.
α = (α1, . . . , αp)

′ Unknown quantities in a Bayes linear analysis.
β = (β1, . . . , βr)

′ Unknown quantities in a Bayes linear analysis. A = α ∪ β.
γ Regression coefficients in a linear model.
Γ(x), ψ(x), ψ1(x) Gamma, digamma and trigamma functions.
η = (η1, . . . , ηn)′ Transformed parameters.
ε2, . . . , εp Autoregression innovations for transformed parameters in the

lifetimes example.
θ1, . . . , θn Binomial or Poisson parameters.
µ = (µ1, . . . , µn)′ Transformed parameters (binomial case).
φ Autoregressive parameter for uncertainty factors in the lifetimes example.
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