Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Fabricating high-density microarrays for retinal recording

Mathieson, K and Cunningham, W and Marchal, J and Melone, J and Horn, M and O'Shea, V and Smith, KM and Litke, A and Chichilnisky, EJ and Rahman, M (2003) Fabricating high-density microarrays for retinal recording. Microelectronic Engineering, 67-8. pp. 520-527. ISSN 0167-9317

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Understanding how the retina encodes the visual scene is a problem, which requires large area, high-density microelectrode arrays to solve. The correlated signals that emerge from the output (ganglion) cells of the retina form a code, which is not well understood. We use a combination of electron beam lithography, photolithography and dry-etch pattern transfer to realise a 519-electrode array in the transparent conductor indium tin oxide (ITO). The electrodes are spaced at 60 μm in a hexagonal close-packed geometry. A mix and match lithography procedure is utilised, whereby the high-density inner region is fabricated using electron beam lithography whilst the outer sections are realised by photolithography. Reactive ion etching (RIE), using CH4/H2, of the ITO forms the array structure and SF6 RIE allows resist removal and patterning of vias through a plasma deposited Si3N4 protective layer. The electrical properties of the ITO layer are unaffected by the etching procedures. A reliable method for achieving low-impedance electroplated platinum electrodes has been employed to yield electrode impedances of ∼20 kΩ. An array fabricated using these dry-etch techniques is shown to record action potentials from live retinal tissue in neurophysiological experiments.