Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

MOLECULAR-ORBITAL BOND INDEX (MOBI) CALCULATIONS ON SELECTED ORGANO-LITHIUM AND LITHIUM ATE SPECIES - EVIDENCE FOR LI=H-C 3-CENTER INTERACTIONS

BARR, D and SNAITH, R and Mulvey, Robert and PERKINS, P G (1988) MOLECULAR-ORBITAL BOND INDEX (MOBI) CALCULATIONS ON SELECTED ORGANO-LITHIUM AND LITHIUM ATE SPECIES - EVIDENCE FOR LI=H-C 3-CENTER INTERACTIONS. Polyhedron, 7 (21). pp. 2119-2128. ISSN 0277-5387

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Molecular Orbital Bond Index (MOBI) calculations have been carried out on selected organolithium tetramers and hexamers, and on certain lithium 'ates, all of which had previously been shown to exhibit short Li ⋯ HC contacts in their solid-state structures. Species so examined comprised (MeLi)4, (EtLi)4 and their “dimerized” forms (to mimic the further association of these tetramers in the crystal), (Me2CHLi)6 and (H3SiCH2Li)6, [as models for (c-C6H11Li)6 and (Me3SiCH2Li)6, respectively], and (LiAlEt4)n and (LiBMe4)n, with n = 1,2. The calculational results indicate that the short Li ⋯ HC distances observed reflect genuine three-centre interactions between lithium centres and CH bonds: thus, summed Li ⋯ H bond indices (measures of the electron density between the nuclei concerned) contribute significantly (44 → 14%) to the total lithium valency, and concomitant weakening of the indices of involved CH bonds (0.80–0.90; cf. indices of distant CH bonds, ca 0.95) is observed.