Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

MOLECULAR-ORBITAL BOND INDEX (MOBI) CALCULATIONS ON SELECTED ORGANO-LITHIUM AND LITHIUM ATE SPECIES - EVIDENCE FOR LI=H-C 3-CENTER INTERACTIONS

BARR, D and SNAITH, R and Mulvey, Robert and PERKINS, P G (1988) MOLECULAR-ORBITAL BOND INDEX (MOBI) CALCULATIONS ON SELECTED ORGANO-LITHIUM AND LITHIUM ATE SPECIES - EVIDENCE FOR LI=H-C 3-CENTER INTERACTIONS. Polyhedron, 7 (21). pp. 2119-2128. ISSN 0277-5387

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Molecular Orbital Bond Index (MOBI) calculations have been carried out on selected organolithium tetramers and hexamers, and on certain lithium 'ates, all of which had previously been shown to exhibit short Li ⋯ HC contacts in their solid-state structures. Species so examined comprised (MeLi)4, (EtLi)4 and their “dimerized” forms (to mimic the further association of these tetramers in the crystal), (Me2CHLi)6 and (H3SiCH2Li)6, [as models for (c-C6H11Li)6 and (Me3SiCH2Li)6, respectively], and (LiAlEt4)n and (LiBMe4)n, with n = 1,2. The calculational results indicate that the short Li ⋯ HC distances observed reflect genuine three-centre interactions between lithium centres and CH bonds: thus, summed Li ⋯ H bond indices (measures of the electron density between the nuclei concerned) contribute significantly (44 → 14%) to the total lithium valency, and concomitant weakening of the indices of involved CH bonds (0.80–0.90; cf. indices of distant CH bonds, ca 0.95) is observed.