Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Developments in GaAs pixel detectors for X-ray imaging

Bates, R and Campbell, M and Da Via, C and Heijne, E and Heuken, M and Jurgensen, H and Ludwig, J and Manolopoulos, S and Marder, D and Mathieson, K and O'Shea, V and Raine, C and Rogalla, M and Smith, KM (1998) Developments in GaAs pixel detectors for X-ray imaging. In: IEEE Transactions on Nuclear Science: proceedings of the 44th IEEE Nuclear Science Symposium and Medical Imaging Conference. IEEE, New York, pp. 534-540. ISBN 0780342593

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Position sensitive hybrid pixel detectors have been fabricated by bump bonding silicon or bulk grown semi-insulating gallium arsenide pixel detectors to CMOS read-out chips. Their performance as X-ray Imaging sensors, in the energy range of 10-70 keV, was evaluated in terms of spatial resolution. For the GaAs device a fit was made to the line spread function (LSF) obtained from the image of a narrow slit and the corresponding modulation transfer function (MTF) and noise equivalent passband (N-e) evaluated. A value of 5.7 line pairs per mm (lp/mm) was found for the latter, with a modulation of 10% at the Nyquist frequency (N-y). A comparison is also given of the performance of these devices with state-of-the-art scintillator on silicon CCD dental X-ray sensors. In a bid to improve detector performance, thick layers of high quality GaAs have recently been grown by low pressure vapour phase epitaxy (LP-VPE). Hall measurements on initial samples gave free carrier concentration of 1-8 x 10(11) cm(-3). From the C-V dependence of a reverse-biased Schottky diode this material, however, a space charge density of 2 x 10(13) cm(-3) was measured. The observed temperature and frequency dependency of the capacitance is characteristic of the presence of deep levels and so the material is believed to have a small degree of compensation due to these levels. The measured charge collection efficiency determined (c.c.e) for 60 keV gamma rays showed an increase with reverse bias, reaching a plateau value of 93% for 100V. The limitations of present detectors are discussed and possible future developments indicated.

Item type: Book Section
ID code: 37521
Keywords: GaAs, pixel detectors, x-ray imaging, photonics, instrumentation, Electrical engineering. Electronics Nuclear engineering
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Architecture
Faculty of Science > Institute of Photonics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 09 Feb 2012 14:23
    Last modified: 06 Sep 2014 08:02
    URI: http://strathprints.strath.ac.uk/id/eprint/37521

    Actions (login required)

    View Item