Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Comparison of bulk and epitaxial 4H-SiC detectors for radiation hard particle tracking

Quinn, T and Bates, R and Bruzzi, M and Cunningham, W and Mathieson, K and Moll, M and Nelson, T and Nilsson, HE and Pintillie, I and Reynolds, L and Sciortino, S and Sellin, P and Strachan, H and Svensson, BG and Vaitkus, J and Rahman, M (2004) Comparison of bulk and epitaxial 4H-SiC detectors for radiation hard particle tracking. In: 2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5. IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD . IEEE, pp. 1028-1033.

Full text not available in this repository. (Request a copy from the Strathclyde author)


Measurements and simulations have been carried out using bulk and epitaxial SiC detectors. Samples were irradiated to fluences of around 1014 hardrons/cm2. Material of thickness 40μm gave a charge collection efficiency of 100% dropping to around 60% at 100 μm thickness. Detailed MEDICI simulations incorporated the main defect levels in SiC, the vanadium center, Z-center and a mid-gap level as measured by deep level transient spectroscopy and other techniques. Calculated recombination currents and charge collection efficiencies at varying fluences were comparable to experimental data. The study suggests that SiC detectors will operate up to fluences around 1016/cm2 as required by future particle physics experiments.