Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Bonding implications of interatomic distances and ligand orientations in the iminolithium hexamers [LiNC(Ph)But]6 and [LiNC(Ph)NMe2]6: a stacked-ring approach to these and related oligomeric organolithium systems

BARR, D and CLEGG, W and Mulvey, Robert and SNAITH, R and WADE, K (1986) Bonding implications of interatomic distances and ligand orientations in the iminolithium hexamers [LiNC(Ph)But]6 and [LiNC(Ph)NMe2]6: a stacked-ring approach to these and related oligomeric organolithium systems. Journal of the Chemical Society, Chemical Communications (4). pp. 295-297. ISSN 0022-4936

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The ligand orientations and Li–N distances in the title compounds show that their µ-3-imino units NC(Ph)R (R = But or NMe2) function as 3-electron ligands, forming one 2-centre LiN bond and one 3-centre Li2N bond to isosceles triangles of bridged metal atoms, prompting treatment of each hexamer [LiNC(Ph)R]6 as a pair of stacked cyclic trimers [LiNC(Ph)R]3; extension of this ring-stacking principle allows many other structures to be rationalised in lithium chemistry and facilitates structural predictions.