Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Development of flexible arrays for in vivo neuronal recording and stimulation

Adams, C and Mathieson, K and Gunning, D and Cunningham, W and Rahman, M and Morrison, JD and Prydderch, ML (2005) Development of flexible arrays for in vivo neuronal recording and stimulation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 546 (1-2). pp. 154-159. ISSN 0168-9002

Full text not available in this repository. (Request a copy from the Strathclyde author)


Recent developments in low-power electronics and semiconductor fabrication techniques have found many applications in the life sciences. High-density electrode arrays are becoming well established as tools for the measurement of neuronal signals. The fabrication of arrays on flexible materials allows for 2Dposition sensitive recording of cellular activity in vivo and for the possibility of direct in vivo stimulus. Using flexible polymer materials, compliant with semiconductor fabrication techniques, we demonstrate a process allowing the fabrication of flexible multi-site microelectrode neuronal recording and stimulating arrays. We describe the development of both 8 and 61 electrode arrays on polyimide substrates with 50 and 5 mm minimum linewidths respectively. Further studies have realised 8-electrode arrays using gold on Polydimethylsiloxane (PDMS), an alternative biocompatible material, with linewidths of 14 mm: Implementing low noise amplification, 2.6 mV rms (bandpass typically 80–2000 Hz), the polyimide 8-electrode arrays have been used to record electroretinogram and ganglion cell action potentials in situ from the frog retina (Rana temporaria). Such arrays coupled to pixellated CMOS sensors, incorporating on-board neural networking should allow for the recovery of basic functionality in the human retina. More specifically, where retinal degeneration has affected only the photosensitive elements of the eye we can utilise the remaining neuronal pathways. Initial stimulation studies for electro-deposited platinum electrodes of 4 nA/mm2 indicate upper breakdown limits for charge density approaching 40 mC m2: Investigations of lifetime stimulation of a 50 mm diameter electrode, of typical impedance less than 20 kO at 1 kHz, suggest operational limits over lifetime in the order of 10 mC m2: These charge densities are adequate for neuronal cell stimulation.

Item type: Article
ID code: 37481
Notes: 6th International Workshop on Radiation Imaging Detectors, Univ Glasgow, Glasgow, SCOTLAND, JUL 25-29, 2004
Keywords: flexible microelectrode array, retina, neuron, stimulation , Optics. Light, Geography. Anthropology. Recreation, Instrumentation, Nuclear and High Energy Physics
Subjects: Science > Physics > Optics. Light
Geography. Anthropology. Recreation
Department: Faculty of Science > Institute of Photonics
Depositing user: Pure Administrator
Date Deposited: 08 Feb 2012 15:03
Last modified: 05 Sep 2014 13:59

Actions (login required)

View Item View Item