Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

The laddering principle in lithium amide chemistry: the crystal and molecular structure of the pyrrolididolithium adduct [H2C(CH2)3NLi]3·MeN(CH2CH2NMe2)2

ARMSTRONG, D R and BARR, D and CLEGG, W and Mulvey, Robert and REED, D and SNAITH, R and WADE, K (1986) The laddering principle in lithium amide chemistry: the crystal and molecular structure of the pyrrolididolithium adduct [H2C(CH2)3NLi]3·MeN(CH2CH2NMe2)2. Journal of the Chemical Society, Chemical Communications (11). pp. 869-870. ISSN 0022-4936

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The title compound, {[H2[graphic omitted]NLi]3·PMDETA}n, (1)(PMDETA = pentamethyldiethylenetriamine), is shown to be the first example of an organonitrogen–lithium laddered structure, consisting in the solid (n= 2) of two attached (NLi)2 rings, or alternatively four (N–Li) rungs, with two terminal NLi units complexes by PMDETA, so preventing further association; cryoscopic and 7Li n.m.r. spectroscopic studies imply that extension of the ladder framework can occur in arene solutions of (1), and these results, together with those from ab initio m.o. calculations on model systems, suggest that similar compounds of type (RR′NLi·xdonor)n, but of various ladder lengths, should be preparable.

Item type: Article
ID code: 37476
Keywords: lithium amide chemistry , crystal structures, molecular structure, Chemistry
Subjects: Science > Chemistry
Department: Faculty of Science > Pure and Applied Chemistry
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 08 Feb 2012 12:31
    Last modified: 17 Jul 2013 11:36
    URI: http://strathprints.strath.ac.uk/id/eprint/37476

    Actions (login required)

    View Item