Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Functional connectivity in the retina at the resolution of photoreceptors

Field, Greg D. and Gauthier, Jeffrey L. and Sher, Alexander and Greschner, Martin and Machado, Timothy A. and Jepson, Lauren H. and Shlens, Jonathon and Gunning, Deborah E. and Mathieson, Keith and Dabrowski, Wladyslaw and Paninski, Liam and Litke, Alan M. and Chichilnisky, E. J. (2010) Functional connectivity in the retina at the resolution of photoreceptors. Nature, 467 (7316). pp. 673-677. ISSN 0028-0836

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

To understand a neural circuit requires knowledge of its connectivity. Here we report measurements of functional connectivity between the input and ouput layers of the macaque retina at single-cell resolution and the implications of these for colour vision. Multi-electrode technology was used to record simultaneously from complete populations of the retinal ganglion cell types (midget, parasol and small bistratified) that transmit high-resolution visual signals to the brain. Fine-grained visual stimulation was used to identify the location, type and strength of the functional input of each cone photoreceptor to each ganglion cell. The populations of ON and OFF midget and parasol cells each sampled the complete population of long- and middle-wavelength-sensitive cones. However, only OFF midget cells frequently received strong input from short-wavelength-sensitive cones. ON and OFF midget cells showed a small non-random tendency to selectively sample from either long- or middle-wavelength-sensitive cones to a degree not explained by clumping in the cone mosaic. These measurements reveal computations in a neural circuit at the elementary resolution of individual neurons.

Item type: Article
ID code: 37468
Keywords: functional connectivity, photoreceptors, photonics , optics, Optics. Light, General
Subjects: Science > Physics > Optics. Light
Department: Faculty of Science > Institute of Photonics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 08 Feb 2012 11:26
    Last modified: 28 Mar 2014 05:49
    URI: http://strathprints.strath.ac.uk/id/eprint/37468

    Actions (login required)

    View Item