Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Fracture of bicrystal metal/ceramic interfaces : a study via the mechanism-based strain gradient crystal plasticity theory

Amir, Muhammad and Schmauder, Siegfried and Huang, Yonngang (2007) Fracture of bicrystal metal/ceramic interfaces : a study via the mechanism-based strain gradient crystal plasticity theory. International Journal of Plasticity, 23 (4). pp. 665-689. ISSN 0749-6419

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Two continuum mechanical models of crystal plasticity theory namely, conventional crystal plasticity theory and mechanism-based crystal plasticity theory, are used to perform a comparative study of stresses that are reached at and ahead of the crack tip of a bicrystal niobium/alumina specimen. Finite element analyses are done for a stationary crack tip and growing cracks using a cohesive modelling approach. Using mechanism-based strain gradient crystal plasticity theory the stresses reached ahead of the crack tip are found to be two times larger than the stresses obtained from conventional crystal plasticity theory. Results also show that strain gradient effects strongly depend on the intrinsic material length to the size of plastic zone ratio (l/R0). It is found that the larger the (l/R0) ratio, the higher the stresses reached using mechanism-based strain gradient crystal plasticity theory. An insight into the role of cohesive strength and work of adhesion in macroscopic fracture is also presented which can be used by experimentalists to design better bimaterials by varying cohesive strength and work of adhesion.