
 

Abstract—Vehicle emissions variations impose significant 
challenges to the automotive industry. In these 
simulation studies, nonlinear estimation techniques 
based on state-dependent and extended Kalman filtering 
are developed for spark ignition engines to enhance 
robustness of the feedforward fuel controllers to changes 
in nominal system parameters and measurement errors. 
A model-based approach is used to derive the optimal 
filters. Numerical simulations indicate the superiority of 
estimation-based approaches to enhance robustness of 
in-cylinder air estimation which directly contributes to 
the precision of engine exhaust air-fuel ratio and, 
consequently the consistency of the tailpipe emissions.  
The results obtained are for an aggressive driving profile 
and are presented and discussed. 

I. INTRODUCTION

There are inherent limitations in the accuracy of sensors, 
actuators and various components for real-time engine 
control. The sources of these variations are either in the 
manufacturing processes or through the normal degradation 
over the life of components.  While tighter manufacturing 
tolerances can reduce these variations, the actual cost may 
be prohibitive. An alternative approach is to design 
controllers with a built-in capability for more robust 
performance in the presence of reasonable variations in the 
component characteristics and the process uncertainties. 
At the same time, in the absence of information about the 
nature of variations and their characteristics for sensors and 
actuators, and engine processes, the design may lead to over 
specification and unnecessary cost escalation. One solution 
is to develop a mathematical model of the process, 
including sensors and actuators, and through simulation 
analysis determine the salient components contributing the 
most to the quantity of interest. The impact of each 
component variation, in isolation and in combination with 
other components, can be simulated numerically and 
evaluated. Model-based filter designs to compensate for the 
process and measurement errors and to obtain the best 
estimates for the quantities of interest will first develop. 
This will use nonlinear estimation techniques, such as the 
state-dependent Kalman filtering and extended Kalman 
filtering methods 
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In this application, we are concerned with important engine 
variables such as the throttle position, the intake manifold 
pressure and temperature. Clearly, all these intake manifold 
variables contribute directly to the cylinder air charge. Due 
to significant time-delays between the process actuation and 
the measurements, that is inherent in the engine processes, 
a closed loop control is always too slow and as a result the 
control performance will suffer [1]. The remedy is to focus 
on the design of a responsive feedforward controller. The 
engine air-fuel ratio is one of the most significant variables 
of interest with the most impact on tailpipe emissions.  We 
will focus our attention on the design of a robust 
feedforward controller for fuel control system. This requires 
a “predictive” control capability in the estimation of the 
cylinder air charge before the required amount of fuel is 
calculated and injected.  The resulting models will be the 
basis for various filter designs and the subsequent analysis 
of the systems response to component analysis.      
It is clear that the systems structure imposes performance 
constraints due to the system model uncertainties that may 
be modeled using random process noise and by the sensor 
uncertainty that may be modeled by the noise. In practice 
this determines the upper bound for control system 
performance that will not be achieved in reality. The model-
based filtering methods are capable of both reconstructing 
the state of the system and filtering the noise from the 
measurements. The feedforward controller relies upon these 
measurements and any improvement in the accuracy will 
result in an improvement of the precision of the air-fuel 
ratio control.  
A mathematical evaluation of the resulting nonlinear 
dynamic system is difficult to achieve, but Monte-Carlo 
simulation tools may be used to assess the envelope of 
variations for a wide range of process variations that are due 
to components and measurements errors.          

II. THE INTAKE MANIFOLD MODEL

The block diagram of the intake manifold and the throttle 
subsystem is shown in Fig. 1. 

Fig. 1: System diagram 
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The electronic throttle is powered by an electric motor 
and is controlled locally by its dedicated controller. The 
drive-by-wire actuator with its controller may be modeled 
by a second order continuous time linear system [1].  

The system is described by the event-based discrete time 

model, ( )[ ], 120 8s n nT N s= , where nN  is the engine speed 

in revolutions per minute at the discrete event n. 
The discretized electronic throttle model is described by 

the equation (1) to follow. A non-minimal representation of 
the original 2nd order system with 3 states was used due to 
better numerical properties for systems discretized with 
variable sampling rate. The process noise that introduces a 
stochastic system uncertainty is also included in the model.  
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In equation (1) nTA  denotes the measured throttle angle. 

The throttle position sensor dynamics are very fast and may 
be neglected. ,SP nTA  is the throttle angle command 

(setpoint), ,ET nw  is the throttle actuator process noise, ,ET nv

is the throttle position measurement noise and the system: 
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It should be noted that due to the variable sampling rate 

,s nT  the model must be re-discretized at each discrete event. 

Alternatively, if the computational burden associated with 
the discretization is too heavy an approximate Euler 
integration method may be employed or discrete time model 
could be stored in a lookup table. 

The equations (2), (3) give the expression for 
nonchoked/choked flow through the throttle [2], [3]. The 
throttle position is given by ,n ET ET nC xα = . For nonchoked 

flow the following model is used: 
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For choked flow the model is given by the equation:  
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where ( ), , ,n d n th n a n air a nC A P R TαΞ = ⋅ ⋅ ⋅ , ,at nm  is the 

throttle mass flow rate, ( ), , , , ,d n d n im n a n nC C P P α=  is the 

discharge coefficient modeled by the lookup table, ( )th nA α
is the throttle cross-sectional area, ,a nP  is the upstream 

pressure (ambient), ,a nT  is the upstream temperature 

(ambient), ,im nP   is the downstream pressure (intake 

manifold), κ  is the ratio of specific heats for dry air, airR  is 

the ideal gas constant for dry air. 

The cross-sectional area ( )th nA α  is a function of the 

throttle body dimensions and the angle between the closed 
and current throttle position. In a very simplified form it 
may be given by the following equation: 

( ) ( )( )2 1 costh n th nA Rα π α= ⋅ − (4) 

where: thR - radius of the throttle.  

The non-linear intake manifold dynamics are discretized 
with the Euler method. The deterministic two state non-
linear discrete time model of the intake manifold is given by 
the following equations: 
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where ( ) ( )1 2ext coolant im a imQ h T T h T T= − + −  - heat transfer 

equation, 1h  - heat transfer coefficient (from the engine), 2h

- heat transfer coefficient (from ambient temperature), imP

is the intake manifold pressure [kPa], imT  is the intake 

manifold temperature [K], aT  is the ambient temperature 

[K], coolantT  is the engine coolant temperature [K], imV  is the 

intake manifold volume [ 3dm⎡ ⎤⎣ ⎦ ], dV  is the engine 

displacement [ 3dm ], ( ), imN Pη η=  is the volumetric 

efficiency [-] and N  is the engine speed [rpm]. 

The non-linear model is parameterized in the state 
dependent coefficient form [4]. The parameterized discrete 
form of the intake manifold model is given by the following 
equation: 
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The stochastic process noise ,EM nw  is introduced in this 

model. The pressure sensor has negligible (fast) dynamics 
and may be modeled by the static output equation with the 
measurement noise ,EM nv . The state dependent matrices of 

the model (7) are of the following form: 
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The port flow rate is modeled as a function of the intake gas 
density, engine displacement and volumetric efficiency: 

,
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The intake manifold air temperature is measured by a 
relatively slow sensor. The discrete-time model of this 
sensor is given by the equation (9). 
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T a T b x w

T T v
+ = + +
= +

(9) 

The , ,im meas nw  is the temperature sensor process noise, 

, ,im meas nv  is the temperature measurement noise and model 

parameters are as follows: ( )expT s Tempa T τ= − ; 

( )0 1 expT s Tempb T τ⎡ ⎤= − −⎣ ⎦ . The Tempτ  is a time constant 

of the sensor. 
The final augmented model is given by the following set 

of equations: 
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nw  and nv  are independent white Gaussian noise 

signals with { }cov nw Q=  and { }cov nv R= . The Q and R 

are diagonal semi-positive and positive definite matrices, 
respectively. 

III. STATE DEPENDENT KALMAN FILTER 

In the paper the discrete time Kalman filter for nonlinear 
systems is considered. The results obtained from the SDKF 
will be related to the standard recursive Extended Kalman 
Filter formulation [5]. Consider the model of the system is 
given by the following discrete time state-space equations: 

1n n n n n n

n n n n

x A x B u w

y C x v
+ = + +
= +

(11) 

where nx  is 1n×  state vector, nu  is 1p×  control vector, 

ny  is 1q×  output vector. The matrices ( )n nA A x= , 

( )n nB B x= , ( )n nC C x=  are functions of state. 

Additionally it is assumed that { },
n x

n nx
C A

∈Ω
∀  is point-wise 

observable [3] in the operating region xΩ . The process 

noise nw  and measurement noise nv  are independent white 

Gaussian signals with { }cov nw Q=  and { }cov nv R= . Q 

and R are diagonal semi-positive and positive definite 
matrices, respectively.  

In this work, a modified Kalman filter based on the state-
dependent representation is used. The state-dependent 
Kalman filter was introduced by Mracek [6]. This was an 
extension of the state-dependent Riccati equation control 
method. The discrete version of the state-dependent Kalman 
filter is given by the following equations: 
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ˆ ˆ ˆˆ ˆ ˆ

ˆˆ ˆ

n n n n n n n n n

n n n

x A x K y C x B u

y C x

+ = ⋅ + − +

=
(12) 

The state dependent model matrices are denoted as 

( ) ( ) ( )ˆ ˆˆˆ ˆ ˆ, ,n n n n n nA A x B B x C C x= = = . The filter gain nK  is 

given by the following equation: 

( ) 1ˆ ˆ ˆT T
n n n n n n nK P C C P C R

−
= + (13) 

The nP  is the solution of the discrete algebraic Riccati 

equation 

( ) 1ˆ ˆ ˆ ˆ ˆ ˆT T T
n n n n n n n n n n nP A P P C R C P C C P A Q

−⎡ ⎤= − + +⎢ ⎥⎣ ⎦

(14) 

The solution of Riccati equation (14) minimizes the 
frozen system’s (11) expected squared state estimation 
error. It should be noticed that the system matrices 
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( ) ( ) ( )ˆ ˆˆˆ ˆ ˆ, ,n n n n n nA A x B B x C C x= = =  are based on the state 

estimates. An estimation bias may result in model 
mismatch. This may cause the state estimates to diverge. 
The convergence analysis of the filter, for a general non-
linear system representation, is not possible. The properties 
of the filter must be analyzed for the particular application. 
The type of non-linearity is an important feature for the 
analysis. In practice a pseudo convergence analysis may be 
carried out through simulation tests. 

IV. THE STOCHASTIC NOISE FILTERING SETUP

The filtering and estimation simulation experiments use 
the model presented in previous section. Unmodeled engine 
parameters logged in the US06 driving cycle dataset (i.e. 
the engine speed, ambient conditions, the throttle position 
setpoint) are used in the simulation as external parameters. 
The engine model and the data are of a sport vehicle with 
5.7 L V8 engine driven on US06 driving cycle on a chassis 
roll. For the data collection purpose the engine was 
controlled by a non-production rapid prototyping setup. 

The air-fuel ratio control system performance strongly 
relies on the precision of the cylinder air charge (CAC) 
prediction. The CAC prediction precision relies on the 
accuracy of the engine parameter measurements. Noise and 
deterministic biases deteriorate the model-based CAC 
prediction. The accuracy assessment is effected by 
comparing the simulated delayed engine CAC with the 
feedforward controller internal prediction [7]. Stochastic 
process and measurement noise is injected into the model. 
Since the air-fuel ratio control accuracy is proportionally 
influenced by the accuracy of the future CAC estimation, 
the CAC prediction mismatch computed as 

( )100% pred actual actualCAC CAC CACε = ⋅ −  is a good metric 

for the control system performance. 
Process noise introduced in the system has the following 

covariance Q : 

{ } { } { } { }( ), , . ,cov cov ,cov ,covn ET n IM n im meas nQ w diag w w w= =

{ } ( ),cov 0, 1.95 -6, 0ET nw diag e=

{ } ( ) { } [ ], . ,cov 2.5 -3, 1 -2 ,cov 1 -4IM n im meas nw diag e e w e= =

The measurement noise is characterized by the 

covariance matrix R : 

{ } { } { } { }( ), , . ,cov cov ,cov ,covn ET n IM n im meas nR v diag v v v= =

{ } { }, ,cov 7.62 -5,cov 1 2ET n IM nv e v e= = −

{ }. ,cov 2.5 3im meas nv e= −

 The extended and state-dependent Kalman filters (EKF 
and SDKF) were used for the reconstruction of the state
when there are noisy measurements. The simulation 

involves the throttle actuator, the throttle flow and the 
intake manifold two-state models. The cylinder air charge 
(CAC) is used within the feedforward (FF) controller. The 
accuracy of the CAC prediction is used as a benchmark of 
the control performance. The FF controller inputs are either 
direct measurements of intake manifold pressure, indicated 
throttle position and intake manifold temperature or 
estimates of these variables obtained from the EKF or 
SDKF. Also, for fair comparison, a test where the intake 
manifold temperature is supplied by an open-loop observer 
is carried out. The SDKF results are compared with the 
direct measurements approach results. The simulation tests 
are carried out with the engine parameters taken from the 
driving cycle data shown in Fig. 2. The controller inputs 
that are either estimates or direct measurements are 
compared with the actual intake manifold and throttle 
states.  
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Fig. 2: Engine simulation parameters 

The indicator of ‘method efficiency’ used in this analysis 
is the cylinder air charge prediction. As described, the 
feedforward (FF) controller used in the simulation employs 
a throttle actuator model for future throttle trajectory 
prediction. This trajectory prediction is used by FF 
controller to generate the cylinder air charge (CAC) 
prediction. The 6-event prediction is compared with the 
actual cylinder air charge being an internal variable of the 
simulated intake manifold. The accuracy of the CAC 
prediction over the simulation time of 80 seconds is 
evaluated based on the integrated absolute and squared error 
value. The results of the simulations are presented and 
analyzed below. The error signal measures are presented in 
Table 1. 

Simulation setup Direct 
measure.

Direct 
measure.+OL 

estimation 

SDKF EKF 

actual predictedCAC CAC−∑ 15376 9943 7124 7101

( )2

actual predictedCAC CAC−∑ 61437 25435 15913 15817 

Table 1: Cylinder air charge error performance parameters 
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The results indicate that the extended Kalman filter 
provides the best accuracy. The state-dependent Kalman 
filter, however, gives very similar results. Note that the 
Kalman gains used for the SDKF result from the solution of 
the algebraic Riccati equation. This provides suboptimal 
steady state solution. However, it is easier to simplify such 
filter for an implementation purpose by means of lookup 
tables. Results obtained using the estimation methods when 
compared to direct measurement methods indicate that 
improved cylinder air charge prediction is achievable. This 
improved CAC prediction, of course, directly results in 
significantly improved air-fuel ratio control precision.

V. THE PARAMETER VARIATION FILTERING SETUP

The results presented in the previous section indicate 
improved cylinder air charge (CAC) prediction accuracy 
when either extended or state-dependent Kalman filters 
(EKF, SDKF) are used. The derivation of the EKF (or 
SDKF) is based on the assumption that the process and 
measurement noise signals are stochastic. This method of 
modeling – especially for the model mismatch represented 
by the process noise is not always accurate. In this section a 
deterministic parameter variation is introduced in the intake 
manifold and throttle model. Additionally, sensor gain 
errors are introduced for throttle position, intake manifold 
pressure and temperature measurements. The system 
diagram including an indication of the point of introduction 
of the parameter variation/uncertainty is shown in Fig. 3. 

Fig. 3:  Engine simulation block – parameter variation 

A Monte-Carlo parameter variation analysis was 
conducted next. The parameters that were determined to be 
subject to variation are displayed in Table 2. A truncated 
Gaussian probability distribution is assumed within the 
parameter variation limits.  

The results of the simulations are presented and analyzed 
now. The analysis of results reveals that the SDKF and EKF 
filters improve the robustness of the cylinder air charge 
estimation to the combination of modeling and 
measurement errors proposed in Table 2.  

Better performance is indicated in any given histogram (
  Fig. 4, Fig. 5) by a higher number of simulation results 
(with either absolute or squared integrated error values) 
occurring at the lower error levels. In each container in the 
histogram the number of simulation results with the 
integrated squared or absolute error within the limits is 
counted. 
Parameter of interest Parameter variation limits 

modelled actual

actual

100par

par par

par
ε

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

Tζ  in (1) [ ]5 %
Tζε = ±

Tω  in (1) [ ]5 %
Tζω = ±

d thC A⋅  in (2), (3) [ ]3 %
d thC Aε ⋅ = ±

1h  in (5), (6) [ ]
1

5 %hε = ±

2h  in (5), (6)   [ ]
2

5 %hε = ±

( ), imN Pη η=  in (5),(6) [ ]4 %ηε = ±

,im measT  measurement 

error 

[ ]
,

2 %
im measTε = ±

imP  measurement error [ ]2 %
imPε = ±

α  measurement error [ ]3 %αε = ±

Table 2: Assumed parameter, measurement error variations 

Obviously the best possible case would have all results 
within the lowest error limits. The accuracy of the statistical 
method used here relies on a large number of simulations 
being carried out. Histograms for the CAC prediction error 
indicate significant improvement over open-loop observer. 
The mean error values computed based on all of 2000 
simulations also indicate superiority of the EKF/SDKF 
methods over the conventional methods based on direct 
measurements 
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   Fig. 4: CAC int. squared error histogram 
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Fig. 5: CAC int. absolute error histogram 

The results are gathered in Table 3. The SDKF provides 
the best overall results in this comparison. This indicates 
that in the presence of model mismatch, this filtering 
method is likely to provide the best robust performance 
among the techniques considered. 

Selected indicator 

imP , α
measured,  

O-L 

,im measT

imP , 

α , 

,im measT
measured

SDKF EKF 

( ){ }2

actual predictedmean CAC CAC−∑ 13265 23385 11487 11516

{ }actual predictedmean CAC CAC−∑ 3646 4850 3222 3230 

Table 3: Mean values of the integrated errors computed   
    based on 2000 tests 

The simulation analysis of the accuracy of the cylinder 
air charge prediction carried out in this section indicated a 
significant improvement in the accuracy of the CAC. 
Robustness was assessed using two different approaches. 
The simulation analysis presented involved feeding the 
process and measurement stochastic noise into the 
simulated intake manifold model, to provide a more 
realistic robustness test environment, the system parameter 
variations were introduced. During the stochastic 
simulation test the extended Kalman filter (EKF) brought 
the best performance. The state-dependent Kalman filter 
(SDKF) was only slightly worse in terms of integrated 
squared and absolute prediction errors. In the robustness 
test (Monte-Carlo) the SDKF provided slightly better 
performance over the EKF. One important advantage of the 
SDKF should not be overlooked. The state-dependent form 
of the model is simpler than the linearized form. This fact 
may be important during on-line implementation of the 
filter. Also, note that the SDKF filter derivation was based 
on the algebraic Riccati equation. Such a methodology 
suggests sub-optimality of the solution. This explains a 

slightly better performance of the EKF observed in Table 1. 
The EKF presented in this paper is based on the recursive 
formulation which, even if system model matrices were pre-
computed and stored in a memory, requires a modest 
computing power for on-line operation. The SDKF may 
easily be simplified by a static lookup-table(s) with a 
number of underlying scheduling parameters that are the 
states of the system. The state-dependent nature implies that 
filter gain also depends upon the state and this may be 
approximated directly by the lookup table. 

CONCLUSIONS 

It has been demonstrated that significant improvements 
in the robustness of the fuel control system to parameter 
changes and measurement uncertainties can be provided 
using model-based filtering techniques. The state dependent 
Kalman filter is used for the estimation of the intake 
manifold pressure, temperature and the electronic throttle 
position. The algorithms that rely on noisy sensor 
measurements suffer from the uncertainty and consequently 
lead to inferior results. The state dependent Kalman filter 
combines a knowledge of the model with the measurements 
leading to improved estimates in uncertain environments. 
These estimates employed by the controller improve the 
overall performance of the control system. As a result, the 
filtering methods provide a significant improvement in the 
feedforward air fuel ratio controller as well. Based on the 
results of a comprehensive stochastic and deterministic 
variation analysis, an improved performance similar to the 
simulation results presented in this paper, are expected from 
the vehicle experiments. However, level of the improvement 
will depend on the accuracy of models used for the 
simulation studies. 
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