Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Optimising and validating an electromagnetic tracker in a human performance laboratory

Murphy, Andrew James and Bull, A.M.J. and McGregor, A.H. (2011) Optimising and validating an electromagnetic tracker in a human performance laboratory. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225 (4). pp. 343-351. ISSN 0954-4119

Full text not available in this repository. (Request a copy from the Strathclyde author)


Measurement errors have previously been observed using electromagnetic motion trackers in applied laboratories. The aims of this study were to optimize the layout of a human performance laboratory for assessing ergometer rowing technique, and to assess the precision and repeatability of measured rotations and trajectories using the Flock of Birds electromagnetic tracker. Four experiments investigated system performance over a large experimental volume: optimization of laboratory space, repeatability of laboratory layout, precision of measured rotations, and repeatability of measured displacements. Measurement accuracy was influenced by varying the global position of the system transmitter; results suggested a correlation with increasing distance between the electromagnetic source and equivalent sensors. Bringing the transmitter or sensors into closer proximity of metallic items may be another source of measurement error. An optimal location for the transmitter was identified, into which the transmitter was repositioned with good repeatability. Measurements were not negativelyaffected by the presence of a rowing ergometer in the experimental volume. Induced sensor rotations were reconstructed with high precision, and the system calculated small changes in sensor displacement with good repeatability. The system is a suitable technology for measuring the trajectory and rotation of moving body segments in applied human movement laboratories.