Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Predicting the lumbosacral joint centre location from palpable anatomical landmarks

Murphy, Andrew James and Bull, A.M.J. and McGregor, A.H. (2011) Predicting the lumbosacral joint centre location from palpable anatomical landmarks. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225 (11). pp. 1082-1087. ISSN 0954-4119

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The kinematics of the lumbar spine have previously been described by considering the bearing of the pelvis and lower back. However earlier studies have not described an intersegmental angle measured about a single point; which is necessary for investigation into movement, posture and balance, and lower back pain and injury. This study used computed tomography (CT) scans of 16 pelves to determine the location of palpable bony landmarks, and the junction of the fifth lumbar and first sacral vertebrae within a pelvis axis system. Data were used to derive equations which express the three-dimensional location of the lumbosacral joint centre as an offset from palpable surface landmarks. The magnitude of X, Y, Z offsets was controlled using individual pelvic geometry, and robustness and repeatability of the method was assessed. Regression equations provided the location of the lumbosacral junction to within 8.2 mm (±3.4 mm) of its true coordinate. Leave-one-out analyses calculated equation coefficients using 15 of the original pelves, with the 16th acting as a control; average errors increased by 6.7 per cent (±0.1 per cent). To the authors' knowledge the current method is the most accurate non-invasive means of locating the lumbosacral junction and may be useful for constructing biomechanical models.