Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Interface fracture analses of a bicrystal specimen using cohesive modelling approach

Amir, Muhammad and Schmauder, Siegfried (2006) Interface fracture analses of a bicrystal specimen using cohesive modelling approach. Modelling and Simulation in Materials Science and Engineering, 14 (6). pp. 1015-1030. ISSN 0965-0393

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The present paper examines the interface fracture of a bicrystal niobium/alumina specimen using a cohesive modelling approach. Crystal plasticity theory has been used to model the single crystalline niobium. The effect of different cohesive law parameters, such as cohesive strength and work of adhesion, has been studied. The cohesive strength is found to have a profound effect on the crack growth resistance and fracture energies as compared with the work of adhesion. The cohesive model parameters are identified by validating the finite element analyses results with experiments. Theoretical interlink between the local adhesion capacity and macroscopic fracture energies has been analysed. The results presented in this work provide an insight into the role of cohesive strength and the work of adhesion in macroscopic fracture is also presented which can be used by experimentalists to design better bimaterials by varying the cohesive strength and the work of adhesion.