Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Laser performance of Ng-cut flash-lamp pumped Nd : KGW at high repetition rates

Yumashev, K. V. and Savitski, Vasili and Kuleshov, N. V. and Pavlyuk, A. A. and Molotkov, D. D. and Protasenya, A. L. (2007) Laser performance of Ng-cut flash-lamp pumped Nd : KGW at high repetition rates. Applied Physics B: Lasers and Optics, 89 (1). pp. 39-43. ISSN 0946-2171

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A comparative study of the flash-lamp pumped laser performance of standard b-grown Nd:KGW and Nd:KGW grown for propagation along the optical axis N-g is presented. The results show that, in comparison with b-grown crystal, the N-g-grown Nd:KGW is very promising for use at high repetition flash-lamp pumping rates. With the same laser cavity configuration, the N-g-grown Nd:KGW can operate at an average flash-lamp input power of at least 1.4 kW, while the b-cut one ceases lasing at average flash-lamp input power of similar to 0.5 kW. The reason for this is that the thermal lens induced in the N-g-oriented Nd:KGW rod under pump radiation is relatively weak, nearly spherical and positive, whereas the b-grown Nd:KGW rod acts as a quite weak positive lens for radiation with radial polarization, and as a much stronger negative lens for tangentially polarized radiation.