Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Thermal analysis investigation of hydriding properties of nanocrystalline Mg-Ni- and Mg-Fe-based alloys prepared by high-energy ball milling

Berlouis, L.E.A. and Cabrera, E. and Hall-Barientos, E. and Hall, P.J. and Dodd, S.B. and Morris, S. and Imam, M.A. (2001) Thermal analysis investigation of hydriding properties of nanocrystalline Mg-Ni- and Mg-Fe-based alloys prepared by high-energy ball milling. Journal of Materials Research, 16 (1). pp. 45-57. ISSN 0884-2914

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The hydrogen loading characteristics of nanocrystalline Mg, Mg–Ni (Ni from 0.1 to 10 at.%), and Mg–Fe (Fe from 1 to 10 at.%) alloys in 3 MPa H2 were examined using high pressure differential scanning calorimetry and thermogravimetric analysis. All samples showed rapid uptake of hydrogen. A decrease in the onset temperature for hydrogen absorption was observed with increasing Ni and Fe alloy content, but the thermal signatures obtained suggested that only Mg was involved in the hydriding reaction; i.e., no clear evidence was found for the intermetallic hydrides Mg2NiH4 and Mg2FeH6. Hydrogen loading capacity decreased with temperature cycling, and this was attributed to a sintering process in the alloy, leading to a reduction in the specific surface available for hydrogen absorption.