Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A variational void coalescence model for ductile metals

Amir, Muhammad and Arciniega, Roman and El Sayed, Tamer (2011) A variational void coalescence model for ductile metals. Computational Mechanics, 49 (2). pp. 185-195.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model's dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model's ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments.