Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM

Amir, Muhammad and El Sayed, Tamer (2011) Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM. Materials Letters, 65. pp. 356-359. ISSN 0167-577X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, a phenomenological crystal plasticity model is modified to account for acoustic (ultrasonic) softening effects based on the level of ultrasonic intensity supplied to single and polycrystalline metals. The material parameters are identified using the inverse modeling approach by interfacing the crystal plasticity model with an optimization tool. The proposed model is validated and verified by comparing the microstructure evolution with experimental EBSD results reported in the literature. The model is able to capture the ultrasonic softening effect and the results show that as the ultrasonic intensity increases, the plastic deformation also increases. Differences in the stress–strain response are explained based on the slip system orientation tensor (Schmidt factors) which depends upon the crystal orientation.