Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Elevated microresonators for investigating the effect of air damping

Li, L. and Brown, J.G. and Uttamchandani, D.G. (2006) Elevated microresonators for investigating the effect of air damping. In: The Institution of Engineering and Technology Seminar on, 2006-04-28 - 2006-04-28.

Full text not available in this repository. (Request a copy from the Strathclyde author)


It is known that the dissipative damping force due to the air film trapped between the bottom of surface micromachined resonators and the substrate on which they are fabricated decreases in magnitude as the separation between the two increases. In order to further investigate this effect and compare experimental findings with theory, a new test device that enables modulation of the damping interaction between a surface micromachined resonator and the substrate has been fabricated. The device, fabricated by the PolyMUMPs process, consists of a surface micromachined polysilicon microresonator, which is elevated out of the plane of the substrate with the assistance of a bimorph beam. The resonator-to-substrate separation of the elevated resonator can be varied by changing the temperature of the bimorph beam. Q factors for different separations have been measured. Experimental results show that the elevated microresonators have Q values which are 65% higher than similar microresonators fabricated close to the substrates. These experimental findings show good agreement with the theoretical model of damping used.