Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Degradation of structural and optical properties of InGaN/GaN multiple quantum wells

Pereira, S.M.D.S. and Correia, M.R. and Pereira, E. and O'Donnell, K.P. and Alves, E. and Barradas, N.P. and Sequeira, A.D. and Watson, I.M. and Liu, C. (2002) Degradation of structural and optical properties of InGaN/GaN multiple quantum wells. Journal of Applied Physics, 105. pp. 302-306. ISSN 0021-8979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A-plane InxGa1−xN/GaN (x = 0.09, 0.14, 0.24, and 0.3) multiple-quantum-wells (MQWs) samples, with a well width of about 4.5 nm, were achieved by utilizing r-plane sapphire substrates. Optical quality was investigated by means of photoluminescence (PL), cathodoluminescence, and time resolved PL measurements (TRPL). Two distinguishable emission peaks were examined from the low temperature PL spectra, where the high- and low-energy peaks were ascribed to quantum wells and localized states, respectively. Due to an increase in the localized energy states and absence of quantum confined Stark effect, the quantum efficiency was increased with increasing indium composition up to 24%. As the indium composition reached 30%, however, pronounced deterioration in luminescence efficiency was observed. The phenomenon could be attributed to the high defect densities in the MQWs resulted from the increased accumulation of strain between the InGaN well and GaN barrier. This argument was verified from the much shorter carrier lifetime at 15 K and smaller activation energy for In0.3Ga0.7N/GaN MQWs. In addition, the polarization-dependent PL revealed that the degree of polarization decreased with increasing indium compositions because of the enhancement of zero-dimensional nature of the localizing centers. Our detailed investigations indicate that the indium content in a-plane InGaN/GaN MQWs not only has an influence on optical performance, but is also important for further application of nitride semiconductors.