Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Analysis of a static undulation on the surface of a thin dielectric liquid layer formed by dielectrophoresis forces

Mottram, Nigel and Brown, Carl and McHale, Glen (2011) Analysis of a static undulation on the surface of a thin dielectric liquid layer formed by dielectrophoresis forces. Journal of Applied Physics, 110 (2). pp. 1-5. ISSN 0021-8979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A layer of insulating liquid of dielectric constant epsilon(Oil) and average thickness (h) over bar coats a flat surface at y = 0 at which a one-dimensional sinusoidal potential V(x, 0) = V(O) cos(pi x/p) is applied. Dielectrophoresis forces create a static undulation (or "wrinkle") distortion h(x) of period p at the liquid/air interface. Analytical expressions have been derived for the electrostatic energy and the interfacial energy associated with the surface undulation when h(x) = (h) over bar - (1/2)A cos(2 pi x/p) yielding a scaling relationship for A as a function of (h) over bar, p, V(O), epsilon(Oil) and the surface tension. The analysis is valid as A/p -> 0, and in this limit convergence with numerical simulation of the system is shown.