Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Investigations of 1.55µm GaInNAs/GaAs heterostructures by optical spectroscopy

Sun, H.D. and Clark, A.H. and Calvez, S. and Dawson, M.D. and Liu, H.Y. and Hopkinson, M. and Navaretti, P. and Ng, J.S. and David, J.P.R. and Gilet, P. and Grenouillet, L. and Million, A. (2004) Investigations of 1.55µm GaInNAs/GaAs heterostructures by optical spectroscopy. IEE Proceedings Optoelectronics, 151 (5). pp. 331-334. ISSN 1350-2433

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Dilute nitride semiconductors are a topic of major current research interest owing to the novel physics induced by the incorporation of N in small percentages of composition. Related research has been further motivated by the favourable characteristics for device applications of the resultant materials, particularly represented by GaInNAs quaternary compounds as active materials in the 1.3–1.6 µm wavelength range. Whilst 1.3-µm GaInNAs/GaAs materials and devices are now reaching a level of maturity, the extension of these structures to around 1.55 µm is still in its infancy. The authors report optical studies of 1.55-µm GaInNAs/GaAs heterostructures of varying characteristics, all grown by molecular beam epitaxy. As the addition of N complicates the local structure and optical properties in this material system, the PL mechanisms are clarified by detailed PL excitation (PLE) spectra. Whereas all the measured samples exhibit strong PL at room temperature, the electronic structure is quite different between samples grown under different conditions. Some demonstrate clearly standard 2-D quantum well (QW) electronic states and some demonstrate evidence of phase-separated quantum-dot-like (QD) structures.