Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Characterisation of natural carious lesions by flurescence spectroscopy at 405nm excitation wavelength

Zezell, D.M. and Ribiero, A.C. and Bachmann, L. and Gomes, A.S.L. and Hall, A.F. and Rousseau, C. and Girkin, J.M. (2005) Characterisation of natural carious lesions by flurescence spectroscopy at 405nm excitation wavelength. Journal of Biomedical Optics, 12. p. 303. ISSN 1083-3668

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We aim to characterize natural caries enamel lesions by fluorescence spectroscopy. Sixty human samples with natural noncavitated caries lesions on smooth surfaces were selected and classified into three groups: dull, shiny, and brown lesions. All the samples were analyzed externally at the natural surface and after hemisectionig internally at the center of the lesion. The lesions were excited with a 405-nm InGaN diode laser and the fluorescence was collected with a single grating spectrometer. Four emission bands (455, 500, 582, and 622 nm) are identified in both sound and carious regions. The area under each emission band is correlated with the total area of the four bands for the sound and carious regions. The detected fluorescence from natural and cut surfaces through the caries lesions is not statistically different for the shiny and dull lesion, but is different [analysis of variance (ANOVA) (p<0.05)] for brown lesion at all emission bands. At the 405-nm excitation wavelength, the area of the fluorescence bands at 455 and 500 nm differ statistically for natural carious lesions and sound tissue.