Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Comparison of using SVC and STATCOM for wind farm integration

Xu, L. and Yao, L. and Sasse, C. (2006) Comparison of using SVC and STATCOM for wind farm integration. In: International Conference on Power System Technology, 2006. PowerCon 2006., 2006-10-22 - 2006-10-26.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper studies system stability of wind farms based on fixed speed induction generators (FSIG) and investigates the use of the static Var compensator (SVC) and static synchronous compensator (STATCOM) for wind farm integration. Due to the nature of asynchronous operation, system instability of wind farms based on FSIG is largely caused by the excessive reactive power absorption by FSIG after fault due to the large rotor slip gained during fault. Wind farm models based on FSIG and equipped with either SVC or STATCOM are developed in PSCAD/EMTDC. It was found that the SVC and STATCOM considerably improve the system stability during and after disturbances, especially when the network is weak. Compared to SVC, STATCOM gave a much better dynamic performance, and provided a better reactive power support to the network, as its maximum reactive current output was virtually independent of the voltage at the point of common coupling (PCC).