Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Distinct NF-kappa B regulation by shear stress through ras-dependent I kappa B alpha oscillations - Real-time analysis of flow-mediated activation in live cells

Ganguli, R. and Persson, L. and Palmer, I. and Smallwood, R. and Black, R.A. and Qwarnstrom, E. (2005) Distinct NF-kappa B regulation by shear stress through ras-dependent I kappa B alpha oscillations - Real-time analysis of flow-mediated activation in live cells. Circulation Research, 96. pp. 626-634. ISSN 0009-7330

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

NF-{kappa}B, a transcription factor central to inflammatory regulation during development of atherosclerosis, is activated by soluble mediators and through biomechanical inputs such as flow-mediated shear- stress. To investigate the molecular mechanisms underlying shear stress mediated signal transduction in vascular cells we have developed a system that applies flow-mediated shear stress in a controlled manner, while inserted in a confocal microscope. In combination with GFP-based methods, this allows continuous monitoring of flow induced signal transduction in live cells and in real time. Flow-mediated shear stress, induced using the system, caused a successive increase in NF-{kappa}B-regulated gene activation. Experiments assessing the mechanisms underlying the NF-{kappa}B induced activity showed time and flow rate dependent effects on the inhibitor, I{kappa}B{alpha}, involving nuclear translocation characterized by a biphasic or cyclic pattern. The effect was observed in both endothelial- and smooth muscle cells, demonstrated to impact noncomplexed I{kappa}B{alpha}, and to involve mechanisms distinct from those mediating cytokine signals. In contrast, effects on the NF-{kappa}B subunit relA were similar to those observed during cytokine stimulation. Further experiments showed the flow induced inter-compartmental transport of I{kappa}B{alpha} to be regulated through the Ras GTP-ase, demonstrating a pronounced reduction in the effects following blocking of Ras activity. These studies show that flow-mediated shear stress, regulated by the Ras GTP-ase, uses distinct mechanisms of NF-{kappa}B control at the molecular level. The oscillatory pattern, reflecting inter-compartmental translocation of I{kappa}B{alpha}, is likely to have fundamental impact on pathway regulation and on development of shear stress-induced distinct vascular cell phenotypes.