Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Modelling the mechanisms of glucose transport through cell membrane of aspergillus niger in submerged citric acid fermennation processess

Mattey, M. (2004) Modelling the mechanisms of glucose transport through cell membrane of aspergillus niger in submerged citric acid fermennation processess. Biochemical Engineering Journal, 20 (1). pp. 7-12. ISSN 1369-703X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Data from batch fermentations of citric acid producing Aspergillus niger cultures in shake flasks, loop and stirred tank bioreactors, were used to construct diffusion models for the transport of glucose. It was found that the mediated diffusion model does not reflect the relationship between the observed uptake rate and glucose concentration, nor for the lack of sensitivity to citrate. This is due in part of the low value of Km in relation to the actual substrate concentration, which means that the carriers are saturated until the end of the process. The membrane barriers must be strongly inhibited under the standard production conditions. Instead, the simple diffusion model fits all the observed data and it explains the relationship between the specific uptake rate and the concentration of glucose, which should not exist under carrier-saturated conditions. This may account for the overproduction or organic acids under the specific process conditions. The simple nature of this mechanism also explains the similarity of the uptake relationships from different sources, despite the use of different growing conditions.