Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

α2(VIII) collagen substrata enhance endothelial cell retention under acute shear stress flow via an α2β1 integrin dependent mechanism: an in vitro and in vivo study

Turner, Neill J. and Murphy, Michael O. and Kielty, Cay M. and Shuttleworth, Adrian and Black, Richard A. and Humphries, Martin J. and Walker, Michael G. and Canfield, Ann E. (2006) α2(VIII) collagen substrata enhance endothelial cell retention under acute shear stress flow via an α2β1 integrin dependent mechanism: an in vitro and in vivo study. Circulation, 114. pp. 820-829. ISSN 0009-7322

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Essential to tissue-engineered vascular grafts is the formation of a functional endothelial monolayer capable of resisting the forces of blood flow. This study targeted {alpha}2(VIII) collagen, a major component of the subendothelial matrix, and examined the ability of and mechanisms by which endothelial cells attach to this collagen under static and dynamic conditions both in vitro and in vivo. These studies demonstrate that {alpha}2(VIII) collagen has the potential to improve both initial cell attachment and retention of endothelial cells on vascular grafts in vivo, which opens new avenues of research into the development of single-stage endothelialized prostheses and the next generation of tissue-engineered vascular grafts.