Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Holographic power-law traps for the efficient production of Bose-Einstein condensates

Bruce, Graham D. and Bromley, Sarah L. and Smirne, Giuseppe and Torralbo-Campo, Lara and Cassettari, Donatella (2011) Holographic power-law traps for the efficient production of Bose-Einstein condensates. Physical Review A, 84 (5). -. ISSN 1094-1622

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We use a phase-only spatial light modulator to generate light distributions in which the intensity decays as a power law from a central maximum with order ranging from 2 (parabolic) to 0.5. We suggest that a sequence of these can be used as a time-dependent optical dipole trap for all-optical production of Bose-Einstein condensates (BECs) in two stages: efficient evaporative cooling in a trap with adjustable strength and depth, followed by an adiabatic transformation of the trap order to cross the BEC transition in a reversible way. Realistic experimental parameters are used to verify the capability of this approach in producing larger BECs than by evaporative cooling alone.