Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Distributed crystal fiber sensing for extreme environments

Dalzell, Craig J. and Han, Thomas P. J. and Ruddock, Ivan S. (2012) Distributed crystal fiber sensing for extreme environments. IEEE Sensors Journal, 12 (1). pp. 164-167. ISSN 1530-437X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Distributed sensing of temperature can be achieved by using time-correlated two-photon excited fluorescence (TPF). To assess the extension of this technique to single-crystal fibers for high-temperature applications, various aspects are considered including the two-photon absorption cross-section (delta), dopant density, and the geometry of single crystal fibers. By comparing the fluorescence yield for two-photon excitation with that for single-photon excitation of the same transition, delta for ruby was measured over the 0.8-1.2 mu m range with maximum room temperature values of 5.9 x 10(-3) GM for e-polarization and 4.6 x 10(-3) GM for o-polarization at 840 nm. It is shown that values of this magnitude are adequate for a practical TPF-based crystal fiber sensor to be realized.