Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Distributed crystal fiber sensing for extreme environments

Dalzell, Craig J. and Han, Thomas P. J. and Ruddock, Ivan S. (2012) Distributed crystal fiber sensing for extreme environments. IEEE Sensors Journal, 12 (1). pp. 164-167. ISSN 1530-437X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Distributed sensing of temperature can be achieved by using time-correlated two-photon excited fluorescence (TPF). To assess the extension of this technique to single-crystal fibers for high-temperature applications, various aspects are considered including the two-photon absorption cross-section (delta), dopant density, and the geometry of single crystal fibers. By comparing the fluorescence yield for two-photon excitation with that for single-photon excitation of the same transition, delta for ruby was measured over the 0.8-1.2 mu m range with maximum room temperature values of 5.9 x 10(-3) GM for e-polarization and 4.6 x 10(-3) GM for o-polarization at 840 nm. It is shown that values of this magnitude are adequate for a practical TPF-based crystal fiber sensor to be realized.