Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarised piezoelectric zones

Estanbouli, Y. and Hayward, G. and Ramedas, N. and Barbenel, J.C. (2006) A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarised piezoelectric zones. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53 (5). pp. 1028-1036. ISSN 0885-3010

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing piezoelectric polarization and the device is assumed to be loaded by semi-infinite isotropic media at the two principal faces. Block diagram representations of the transducer acting as both a generator and a receiver of ultrasound are developed in conjunction with the equivalent model of the electrical admittance. When expressed in this manner, the underlying cause and effect relationships are identified, with the important contribution of the piezoelectric boundary highlighted. Comparisons with the conventional single-layer transducer are made throughout and the major physical differences in terms of transduction performance are discussed. The new model is compared with finite element analysis and good agreement is also demonstrated with experimental data. A key aspect of the methodology is the provision of a more intuitive understanding of such device behavior. Accordingly, emphasis has been placed on the physical relationships and this is considered a major contribution of the work.