Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarised piezoelectric zones

Estanbouli, Y. and Hayward, G. and Ramedas, N. and Barbenel, J.C. (2006) A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarised piezoelectric zones. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53 (5). pp. 1028-1036. ISSN 0885-3010

Full text not available in this repository. Request a copy from the Strathclyde author


A unidimensional, linear systems, block diagram model of a two-layer thickness mode piezoelectric transducer is presented. The layers are subject to opposing piezoelectric polarization and the device is assumed to be loaded by semi-infinite isotropic media at the two principal faces. Block diagram representations of the transducer acting as both a generator and a receiver of ultrasound are developed in conjunction with the equivalent model of the electrical admittance. When expressed in this manner, the underlying cause and effect relationships are identified, with the important contribution of the piezoelectric boundary highlighted. Comparisons with the conventional single-layer transducer are made throughout and the major physical differences in terms of transduction performance are discussed. The new model is compared with finite element analysis and good agreement is also demonstrated with experimental data. A key aspect of the methodology is the provision of a more intuitive understanding of such device behavior. Accordingly, emphasis has been placed on the physical relationships and this is considered a major contribution of the work.