Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A non-contact method of determining material properties and structural integrity through the analysis of laser generated ultrasound

Sorazu, B.L. and Atique, S.H. and Culshaw, B. and Thursby, G.J. (2006) A non-contact method of determining material properties and structural integrity through the analysis of laser generated ultrasound. In: 3rd European Workshop on Structural Health Monitoring, 2006-07-05 - 2006-07-07.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper describes a technique to evaluate the mechanical properties of a structure without involving any physical contact with that structure. The basic principle is to monitor the ultrasonic transfer function of the structure. However by utilising Lamb wave dispersion characteristics whose shape depends on a multitude of parameters, this approach is capable of extracting far more structural data than straightforward compressional mode propagation measurements. In this paper we shall describe initially how optical techniques are used to both launch and receive Lamb wave signals. Typically a very short harmonically rich pulse of laser light is used to launch a wide spectrum of ultrasonic frequencies. From this impulse response the dispersion curves can be extracted. In turn these dispersion curves can be inverted to produce values for important parameters such as Young's modulus, material thickness and Poisson's ratio. We demonstrate that this inversion technique is capable of producing values for mechanical parameters with a reproducibility of a few percent. Consequently any deviation in these values becomes immediately obvious. Such deviations can be indicator of structural damage or deterioration. Examples demonstrating this discrimination capability are also included in the paper.